This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ipdiri . (Contributed by NM, 26-Apr-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ip1i.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| ip1i.2 | ⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) | ||
| ip1i.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑈 ) | ||
| ip1i.7 | ⊢ 𝑃 = ( ·𝑖OLD ‘ 𝑈 ) | ||
| ip1i.9 | ⊢ 𝑈 ∈ CPreHilOLD | ||
| ipdiri.8 | ⊢ 𝐴 ∈ 𝑋 | ||
| ipdiri.9 | ⊢ 𝐵 ∈ 𝑋 | ||
| ipdiri.10 | ⊢ 𝐶 ∈ 𝑋 | ||
| Assertion | ipdirilem | ⊢ ( ( 𝐴 𝐺 𝐵 ) 𝑃 𝐶 ) = ( ( 𝐴 𝑃 𝐶 ) + ( 𝐵 𝑃 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ip1i.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | ip1i.2 | ⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) | |
| 3 | ip1i.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑈 ) | |
| 4 | ip1i.7 | ⊢ 𝑃 = ( ·𝑖OLD ‘ 𝑈 ) | |
| 5 | ip1i.9 | ⊢ 𝑈 ∈ CPreHilOLD | |
| 6 | ipdiri.8 | ⊢ 𝐴 ∈ 𝑋 | |
| 7 | ipdiri.9 | ⊢ 𝐵 ∈ 𝑋 | |
| 8 | ipdiri.10 | ⊢ 𝐶 ∈ 𝑋 | |
| 9 | 2cn | ⊢ 2 ∈ ℂ | |
| 10 | 2ne0 | ⊢ 2 ≠ 0 | |
| 11 | 9 10 | recidi | ⊢ ( 2 · ( 1 / 2 ) ) = 1 |
| 12 | 11 | oveq1i | ⊢ ( ( 2 · ( 1 / 2 ) ) 𝑆 ( 𝐴 𝐺 𝐵 ) ) = ( 1 𝑆 ( 𝐴 𝐺 𝐵 ) ) |
| 13 | 5 | phnvi | ⊢ 𝑈 ∈ NrmCVec |
| 14 | halfcn | ⊢ ( 1 / 2 ) ∈ ℂ | |
| 15 | 1 2 | nvgcl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐺 𝐵 ) ∈ 𝑋 ) |
| 16 | 13 6 7 15 | mp3an | ⊢ ( 𝐴 𝐺 𝐵 ) ∈ 𝑋 |
| 17 | 9 14 16 | 3pm3.2i | ⊢ ( 2 ∈ ℂ ∧ ( 1 / 2 ) ∈ ℂ ∧ ( 𝐴 𝐺 𝐵 ) ∈ 𝑋 ) |
| 18 | 1 3 | nvsass | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 2 ∈ ℂ ∧ ( 1 / 2 ) ∈ ℂ ∧ ( 𝐴 𝐺 𝐵 ) ∈ 𝑋 ) ) → ( ( 2 · ( 1 / 2 ) ) 𝑆 ( 𝐴 𝐺 𝐵 ) ) = ( 2 𝑆 ( ( 1 / 2 ) 𝑆 ( 𝐴 𝐺 𝐵 ) ) ) ) |
| 19 | 13 17 18 | mp2an | ⊢ ( ( 2 · ( 1 / 2 ) ) 𝑆 ( 𝐴 𝐺 𝐵 ) ) = ( 2 𝑆 ( ( 1 / 2 ) 𝑆 ( 𝐴 𝐺 𝐵 ) ) ) |
| 20 | 1 3 | nvsid | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 𝐺 𝐵 ) ∈ 𝑋 ) → ( 1 𝑆 ( 𝐴 𝐺 𝐵 ) ) = ( 𝐴 𝐺 𝐵 ) ) |
| 21 | 13 16 20 | mp2an | ⊢ ( 1 𝑆 ( 𝐴 𝐺 𝐵 ) ) = ( 𝐴 𝐺 𝐵 ) |
| 22 | 12 19 21 | 3eqtr3i | ⊢ ( 2 𝑆 ( ( 1 / 2 ) 𝑆 ( 𝐴 𝐺 𝐵 ) ) ) = ( 𝐴 𝐺 𝐵 ) |
| 23 | 22 | oveq1i | ⊢ ( ( 2 𝑆 ( ( 1 / 2 ) 𝑆 ( 𝐴 𝐺 𝐵 ) ) ) 𝑃 𝐶 ) = ( ( 𝐴 𝐺 𝐵 ) 𝑃 𝐶 ) |
| 24 | 1 3 | nvscl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 1 / 2 ) ∈ ℂ ∧ ( 𝐴 𝐺 𝐵 ) ∈ 𝑋 ) → ( ( 1 / 2 ) 𝑆 ( 𝐴 𝐺 𝐵 ) ) ∈ 𝑋 ) |
| 25 | 13 14 16 24 | mp3an | ⊢ ( ( 1 / 2 ) 𝑆 ( 𝐴 𝐺 𝐵 ) ) ∈ 𝑋 |
| 26 | 1 2 3 4 5 25 8 | ip2i | ⊢ ( ( 2 𝑆 ( ( 1 / 2 ) 𝑆 ( 𝐴 𝐺 𝐵 ) ) ) 𝑃 𝐶 ) = ( 2 · ( ( ( 1 / 2 ) 𝑆 ( 𝐴 𝐺 𝐵 ) ) 𝑃 𝐶 ) ) |
| 27 | 23 26 | eqtr3i | ⊢ ( ( 𝐴 𝐺 𝐵 ) 𝑃 𝐶 ) = ( 2 · ( ( ( 1 / 2 ) 𝑆 ( 𝐴 𝐺 𝐵 ) ) 𝑃 𝐶 ) ) |
| 28 | neg1cn | ⊢ - 1 ∈ ℂ | |
| 29 | 1 3 | nvscl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ - 1 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ) → ( - 1 𝑆 𝐵 ) ∈ 𝑋 ) |
| 30 | 13 28 7 29 | mp3an | ⊢ ( - 1 𝑆 𝐵 ) ∈ 𝑋 |
| 31 | 1 2 | nvgcl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ ( - 1 𝑆 𝐵 ) ∈ 𝑋 ) → ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) ∈ 𝑋 ) |
| 32 | 13 6 30 31 | mp3an | ⊢ ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) ∈ 𝑋 |
| 33 | 1 3 | nvscl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 1 / 2 ) ∈ ℂ ∧ ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) ∈ 𝑋 ) → ( ( 1 / 2 ) 𝑆 ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) ) ∈ 𝑋 ) |
| 34 | 13 14 32 33 | mp3an | ⊢ ( ( 1 / 2 ) 𝑆 ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) ) ∈ 𝑋 |
| 35 | 1 2 3 4 5 25 34 8 | ip1i | ⊢ ( ( ( ( ( 1 / 2 ) 𝑆 ( 𝐴 𝐺 𝐵 ) ) 𝐺 ( ( 1 / 2 ) 𝑆 ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) ) ) 𝑃 𝐶 ) + ( ( ( ( 1 / 2 ) 𝑆 ( 𝐴 𝐺 𝐵 ) ) 𝐺 ( - 1 𝑆 ( ( 1 / 2 ) 𝑆 ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) ) ) ) 𝑃 𝐶 ) ) = ( 2 · ( ( ( 1 / 2 ) 𝑆 ( 𝐴 𝐺 𝐵 ) ) 𝑃 𝐶 ) ) |
| 36 | eqid | ⊢ ( 1st ‘ 𝑈 ) = ( 1st ‘ 𝑈 ) | |
| 37 | 36 | nvvc | ⊢ ( 𝑈 ∈ NrmCVec → ( 1st ‘ 𝑈 ) ∈ CVecOLD ) |
| 38 | 13 37 | ax-mp | ⊢ ( 1st ‘ 𝑈 ) ∈ CVecOLD |
| 39 | 2 | vafval | ⊢ 𝐺 = ( 1st ‘ ( 1st ‘ 𝑈 ) ) |
| 40 | 39 | vcablo | ⊢ ( ( 1st ‘ 𝑈 ) ∈ CVecOLD → 𝐺 ∈ AbelOp ) |
| 41 | 38 40 | ax-mp | ⊢ 𝐺 ∈ AbelOp |
| 42 | 6 7 | pm3.2i | ⊢ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) |
| 43 | 6 30 | pm3.2i | ⊢ ( 𝐴 ∈ 𝑋 ∧ ( - 1 𝑆 𝐵 ) ∈ 𝑋 ) |
| 44 | 1 2 | bafval | ⊢ 𝑋 = ran 𝐺 |
| 45 | 44 | ablo4 | ⊢ ( ( 𝐺 ∈ AbelOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ ( - 1 𝑆 𝐵 ) ∈ 𝑋 ) ) → ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) ) = ( ( 𝐴 𝐺 𝐴 ) 𝐺 ( 𝐵 𝐺 ( - 1 𝑆 𝐵 ) ) ) ) |
| 46 | 41 42 43 45 | mp3an | ⊢ ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) ) = ( ( 𝐴 𝐺 𝐴 ) 𝐺 ( 𝐵 𝐺 ( - 1 𝑆 𝐵 ) ) ) |
| 47 | 3 | smfval | ⊢ 𝑆 = ( 2nd ‘ ( 1st ‘ 𝑈 ) ) |
| 48 | 39 47 44 | vc2OLD | ⊢ ( ( ( 1st ‘ 𝑈 ) ∈ CVecOLD ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 𝐺 𝐴 ) = ( 2 𝑆 𝐴 ) ) |
| 49 | 38 6 48 | mp2an | ⊢ ( 𝐴 𝐺 𝐴 ) = ( 2 𝑆 𝐴 ) |
| 50 | eqid | ⊢ ( 0vec ‘ 𝑈 ) = ( 0vec ‘ 𝑈 ) | |
| 51 | 1 2 3 50 | nvrinv | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ) → ( 𝐵 𝐺 ( - 1 𝑆 𝐵 ) ) = ( 0vec ‘ 𝑈 ) ) |
| 52 | 13 7 51 | mp2an | ⊢ ( 𝐵 𝐺 ( - 1 𝑆 𝐵 ) ) = ( 0vec ‘ 𝑈 ) |
| 53 | 49 52 | oveq12i | ⊢ ( ( 𝐴 𝐺 𝐴 ) 𝐺 ( 𝐵 𝐺 ( - 1 𝑆 𝐵 ) ) ) = ( ( 2 𝑆 𝐴 ) 𝐺 ( 0vec ‘ 𝑈 ) ) |
| 54 | 1 3 | nvscl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 2 ∈ ℂ ∧ 𝐴 ∈ 𝑋 ) → ( 2 𝑆 𝐴 ) ∈ 𝑋 ) |
| 55 | 13 9 6 54 | mp3an | ⊢ ( 2 𝑆 𝐴 ) ∈ 𝑋 |
| 56 | 1 2 50 | nv0rid | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 2 𝑆 𝐴 ) ∈ 𝑋 ) → ( ( 2 𝑆 𝐴 ) 𝐺 ( 0vec ‘ 𝑈 ) ) = ( 2 𝑆 𝐴 ) ) |
| 57 | 13 55 56 | mp2an | ⊢ ( ( 2 𝑆 𝐴 ) 𝐺 ( 0vec ‘ 𝑈 ) ) = ( 2 𝑆 𝐴 ) |
| 58 | 46 53 57 | 3eqtri | ⊢ ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) ) = ( 2 𝑆 𝐴 ) |
| 59 | 58 | oveq2i | ⊢ ( ( 1 / 2 ) 𝑆 ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) ) ) = ( ( 1 / 2 ) 𝑆 ( 2 𝑆 𝐴 ) ) |
| 60 | 14 9 6 | 3pm3.2i | ⊢ ( ( 1 / 2 ) ∈ ℂ ∧ 2 ∈ ℂ ∧ 𝐴 ∈ 𝑋 ) |
| 61 | 1 3 | nvsass | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( ( 1 / 2 ) ∈ ℂ ∧ 2 ∈ ℂ ∧ 𝐴 ∈ 𝑋 ) ) → ( ( ( 1 / 2 ) · 2 ) 𝑆 𝐴 ) = ( ( 1 / 2 ) 𝑆 ( 2 𝑆 𝐴 ) ) ) |
| 62 | 13 60 61 | mp2an | ⊢ ( ( ( 1 / 2 ) · 2 ) 𝑆 𝐴 ) = ( ( 1 / 2 ) 𝑆 ( 2 𝑆 𝐴 ) ) |
| 63 | 59 62 | eqtr4i | ⊢ ( ( 1 / 2 ) 𝑆 ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) ) ) = ( ( ( 1 / 2 ) · 2 ) 𝑆 𝐴 ) |
| 64 | 14 16 32 | 3pm3.2i | ⊢ ( ( 1 / 2 ) ∈ ℂ ∧ ( 𝐴 𝐺 𝐵 ) ∈ 𝑋 ∧ ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) ∈ 𝑋 ) |
| 65 | 1 2 3 | nvdi | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( ( 1 / 2 ) ∈ ℂ ∧ ( 𝐴 𝐺 𝐵 ) ∈ 𝑋 ∧ ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) ∈ 𝑋 ) ) → ( ( 1 / 2 ) 𝑆 ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) ) ) = ( ( ( 1 / 2 ) 𝑆 ( 𝐴 𝐺 𝐵 ) ) 𝐺 ( ( 1 / 2 ) 𝑆 ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) ) ) ) |
| 66 | 13 64 65 | mp2an | ⊢ ( ( 1 / 2 ) 𝑆 ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) ) ) = ( ( ( 1 / 2 ) 𝑆 ( 𝐴 𝐺 𝐵 ) ) 𝐺 ( ( 1 / 2 ) 𝑆 ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) ) ) |
| 67 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 68 | 67 9 10 | divcan1i | ⊢ ( ( 1 / 2 ) · 2 ) = 1 |
| 69 | 68 | oveq1i | ⊢ ( ( ( 1 / 2 ) · 2 ) 𝑆 𝐴 ) = ( 1 𝑆 𝐴 ) |
| 70 | 1 3 | nvsid | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 1 𝑆 𝐴 ) = 𝐴 ) |
| 71 | 13 6 70 | mp2an | ⊢ ( 1 𝑆 𝐴 ) = 𝐴 |
| 72 | 69 71 | eqtri | ⊢ ( ( ( 1 / 2 ) · 2 ) 𝑆 𝐴 ) = 𝐴 |
| 73 | 63 66 72 | 3eqtr3i | ⊢ ( ( ( 1 / 2 ) 𝑆 ( 𝐴 𝐺 𝐵 ) ) 𝐺 ( ( 1 / 2 ) 𝑆 ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) ) ) = 𝐴 |
| 74 | 73 | oveq1i | ⊢ ( ( ( ( 1 / 2 ) 𝑆 ( 𝐴 𝐺 𝐵 ) ) 𝐺 ( ( 1 / 2 ) 𝑆 ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) ) ) 𝑃 𝐶 ) = ( 𝐴 𝑃 𝐶 ) |
| 75 | 28 14 | mulcomi | ⊢ ( - 1 · ( 1 / 2 ) ) = ( ( 1 / 2 ) · - 1 ) |
| 76 | 75 | oveq1i | ⊢ ( ( - 1 · ( 1 / 2 ) ) 𝑆 ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) ) = ( ( ( 1 / 2 ) · - 1 ) 𝑆 ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) ) |
| 77 | 28 14 32 | 3pm3.2i | ⊢ ( - 1 ∈ ℂ ∧ ( 1 / 2 ) ∈ ℂ ∧ ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) ∈ 𝑋 ) |
| 78 | 1 3 | nvsass | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( - 1 ∈ ℂ ∧ ( 1 / 2 ) ∈ ℂ ∧ ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) ∈ 𝑋 ) ) → ( ( - 1 · ( 1 / 2 ) ) 𝑆 ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) ) = ( - 1 𝑆 ( ( 1 / 2 ) 𝑆 ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) ) ) ) |
| 79 | 13 77 78 | mp2an | ⊢ ( ( - 1 · ( 1 / 2 ) ) 𝑆 ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) ) = ( - 1 𝑆 ( ( 1 / 2 ) 𝑆 ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) ) ) |
| 80 | 14 28 32 | 3pm3.2i | ⊢ ( ( 1 / 2 ) ∈ ℂ ∧ - 1 ∈ ℂ ∧ ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) ∈ 𝑋 ) |
| 81 | 1 3 | nvsass | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( ( 1 / 2 ) ∈ ℂ ∧ - 1 ∈ ℂ ∧ ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) ∈ 𝑋 ) ) → ( ( ( 1 / 2 ) · - 1 ) 𝑆 ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) ) = ( ( 1 / 2 ) 𝑆 ( - 1 𝑆 ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) ) ) ) |
| 82 | 13 80 81 | mp2an | ⊢ ( ( ( 1 / 2 ) · - 1 ) 𝑆 ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) ) = ( ( 1 / 2 ) 𝑆 ( - 1 𝑆 ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) ) ) |
| 83 | 28 6 30 | 3pm3.2i | ⊢ ( - 1 ∈ ℂ ∧ 𝐴 ∈ 𝑋 ∧ ( - 1 𝑆 𝐵 ) ∈ 𝑋 ) |
| 84 | 1 2 3 | nvdi | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( - 1 ∈ ℂ ∧ 𝐴 ∈ 𝑋 ∧ ( - 1 𝑆 𝐵 ) ∈ 𝑋 ) ) → ( - 1 𝑆 ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) ) = ( ( - 1 𝑆 𝐴 ) 𝐺 ( - 1 𝑆 ( - 1 𝑆 𝐵 ) ) ) ) |
| 85 | 13 83 84 | mp2an | ⊢ ( - 1 𝑆 ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) ) = ( ( - 1 𝑆 𝐴 ) 𝐺 ( - 1 𝑆 ( - 1 𝑆 𝐵 ) ) ) |
| 86 | neg1mulneg1e1 | ⊢ ( - 1 · - 1 ) = 1 | |
| 87 | 86 | oveq1i | ⊢ ( ( - 1 · - 1 ) 𝑆 𝐵 ) = ( 1 𝑆 𝐵 ) |
| 88 | 28 28 7 | 3pm3.2i | ⊢ ( - 1 ∈ ℂ ∧ - 1 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ) |
| 89 | 1 3 | nvsass | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( - 1 ∈ ℂ ∧ - 1 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ) ) → ( ( - 1 · - 1 ) 𝑆 𝐵 ) = ( - 1 𝑆 ( - 1 𝑆 𝐵 ) ) ) |
| 90 | 13 88 89 | mp2an | ⊢ ( ( - 1 · - 1 ) 𝑆 𝐵 ) = ( - 1 𝑆 ( - 1 𝑆 𝐵 ) ) |
| 91 | 1 3 | nvsid | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ) → ( 1 𝑆 𝐵 ) = 𝐵 ) |
| 92 | 13 7 91 | mp2an | ⊢ ( 1 𝑆 𝐵 ) = 𝐵 |
| 93 | 87 90 92 | 3eqtr3i | ⊢ ( - 1 𝑆 ( - 1 𝑆 𝐵 ) ) = 𝐵 |
| 94 | 93 | oveq2i | ⊢ ( ( - 1 𝑆 𝐴 ) 𝐺 ( - 1 𝑆 ( - 1 𝑆 𝐵 ) ) ) = ( ( - 1 𝑆 𝐴 ) 𝐺 𝐵 ) |
| 95 | 85 94 | eqtri | ⊢ ( - 1 𝑆 ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) ) = ( ( - 1 𝑆 𝐴 ) 𝐺 𝐵 ) |
| 96 | 95 | oveq2i | ⊢ ( ( 1 / 2 ) 𝑆 ( - 1 𝑆 ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) ) ) = ( ( 1 / 2 ) 𝑆 ( ( - 1 𝑆 𝐴 ) 𝐺 𝐵 ) ) |
| 97 | 82 96 | eqtri | ⊢ ( ( ( 1 / 2 ) · - 1 ) 𝑆 ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) ) = ( ( 1 / 2 ) 𝑆 ( ( - 1 𝑆 𝐴 ) 𝐺 𝐵 ) ) |
| 98 | 76 79 97 | 3eqtr3i | ⊢ ( - 1 𝑆 ( ( 1 / 2 ) 𝑆 ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) ) ) = ( ( 1 / 2 ) 𝑆 ( ( - 1 𝑆 𝐴 ) 𝐺 𝐵 ) ) |
| 99 | 98 | oveq2i | ⊢ ( ( ( 1 / 2 ) 𝑆 ( 𝐴 𝐺 𝐵 ) ) 𝐺 ( - 1 𝑆 ( ( 1 / 2 ) 𝑆 ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) ) ) ) = ( ( ( 1 / 2 ) 𝑆 ( 𝐴 𝐺 𝐵 ) ) 𝐺 ( ( 1 / 2 ) 𝑆 ( ( - 1 𝑆 𝐴 ) 𝐺 𝐵 ) ) ) |
| 100 | 1 3 | nvscl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ - 1 ∈ ℂ ∧ 𝐴 ∈ 𝑋 ) → ( - 1 𝑆 𝐴 ) ∈ 𝑋 ) |
| 101 | 13 28 6 100 | mp3an | ⊢ ( - 1 𝑆 𝐴 ) ∈ 𝑋 |
| 102 | 1 2 | nvgcl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( - 1 𝑆 𝐴 ) ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( - 1 𝑆 𝐴 ) 𝐺 𝐵 ) ∈ 𝑋 ) |
| 103 | 13 101 7 102 | mp3an | ⊢ ( ( - 1 𝑆 𝐴 ) 𝐺 𝐵 ) ∈ 𝑋 |
| 104 | 14 16 103 | 3pm3.2i | ⊢ ( ( 1 / 2 ) ∈ ℂ ∧ ( 𝐴 𝐺 𝐵 ) ∈ 𝑋 ∧ ( ( - 1 𝑆 𝐴 ) 𝐺 𝐵 ) ∈ 𝑋 ) |
| 105 | 1 2 3 | nvdi | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( ( 1 / 2 ) ∈ ℂ ∧ ( 𝐴 𝐺 𝐵 ) ∈ 𝑋 ∧ ( ( - 1 𝑆 𝐴 ) 𝐺 𝐵 ) ∈ 𝑋 ) ) → ( ( 1 / 2 ) 𝑆 ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( ( - 1 𝑆 𝐴 ) 𝐺 𝐵 ) ) ) = ( ( ( 1 / 2 ) 𝑆 ( 𝐴 𝐺 𝐵 ) ) 𝐺 ( ( 1 / 2 ) 𝑆 ( ( - 1 𝑆 𝐴 ) 𝐺 𝐵 ) ) ) ) |
| 106 | 13 104 105 | mp2an | ⊢ ( ( 1 / 2 ) 𝑆 ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( ( - 1 𝑆 𝐴 ) 𝐺 𝐵 ) ) ) = ( ( ( 1 / 2 ) 𝑆 ( 𝐴 𝐺 𝐵 ) ) 𝐺 ( ( 1 / 2 ) 𝑆 ( ( - 1 𝑆 𝐴 ) 𝐺 𝐵 ) ) ) |
| 107 | 99 106 | eqtr4i | ⊢ ( ( ( 1 / 2 ) 𝑆 ( 𝐴 𝐺 𝐵 ) ) 𝐺 ( - 1 𝑆 ( ( 1 / 2 ) 𝑆 ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) ) ) ) = ( ( 1 / 2 ) 𝑆 ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( ( - 1 𝑆 𝐴 ) 𝐺 𝐵 ) ) ) |
| 108 | 101 7 | pm3.2i | ⊢ ( ( - 1 𝑆 𝐴 ) ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) |
| 109 | 44 | ablo4 | ⊢ ( ( 𝐺 ∈ AbelOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( - 1 𝑆 𝐴 ) ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( ( - 1 𝑆 𝐴 ) 𝐺 𝐵 ) ) = ( ( 𝐴 𝐺 ( - 1 𝑆 𝐴 ) ) 𝐺 ( 𝐵 𝐺 𝐵 ) ) ) |
| 110 | 41 42 108 109 | mp3an | ⊢ ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( ( - 1 𝑆 𝐴 ) 𝐺 𝐵 ) ) = ( ( 𝐴 𝐺 ( - 1 𝑆 𝐴 ) ) 𝐺 ( 𝐵 𝐺 𝐵 ) ) |
| 111 | 1 2 3 50 | nvrinv | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 𝐺 ( - 1 𝑆 𝐴 ) ) = ( 0vec ‘ 𝑈 ) ) |
| 112 | 13 6 111 | mp2an | ⊢ ( 𝐴 𝐺 ( - 1 𝑆 𝐴 ) ) = ( 0vec ‘ 𝑈 ) |
| 113 | 112 | oveq1i | ⊢ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐴 ) ) 𝐺 ( 𝐵 𝐺 𝐵 ) ) = ( ( 0vec ‘ 𝑈 ) 𝐺 ( 𝐵 𝐺 𝐵 ) ) |
| 114 | 1 2 | nvgcl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐵 𝐺 𝐵 ) ∈ 𝑋 ) |
| 115 | 13 7 7 114 | mp3an | ⊢ ( 𝐵 𝐺 𝐵 ) ∈ 𝑋 |
| 116 | 1 2 50 | nv0lid | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐵 𝐺 𝐵 ) ∈ 𝑋 ) → ( ( 0vec ‘ 𝑈 ) 𝐺 ( 𝐵 𝐺 𝐵 ) ) = ( 𝐵 𝐺 𝐵 ) ) |
| 117 | 13 115 116 | mp2an | ⊢ ( ( 0vec ‘ 𝑈 ) 𝐺 ( 𝐵 𝐺 𝐵 ) ) = ( 𝐵 𝐺 𝐵 ) |
| 118 | 113 117 | eqtri | ⊢ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐴 ) ) 𝐺 ( 𝐵 𝐺 𝐵 ) ) = ( 𝐵 𝐺 𝐵 ) |
| 119 | 39 47 44 | vc2OLD | ⊢ ( ( ( 1st ‘ 𝑈 ) ∈ CVecOLD ∧ 𝐵 ∈ 𝑋 ) → ( 𝐵 𝐺 𝐵 ) = ( 2 𝑆 𝐵 ) ) |
| 120 | 38 7 119 | mp2an | ⊢ ( 𝐵 𝐺 𝐵 ) = ( 2 𝑆 𝐵 ) |
| 121 | 110 118 120 | 3eqtri | ⊢ ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( ( - 1 𝑆 𝐴 ) 𝐺 𝐵 ) ) = ( 2 𝑆 𝐵 ) |
| 122 | 121 | oveq2i | ⊢ ( ( 1 / 2 ) 𝑆 ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( ( - 1 𝑆 𝐴 ) 𝐺 𝐵 ) ) ) = ( ( 1 / 2 ) 𝑆 ( 2 𝑆 𝐵 ) ) |
| 123 | 14 9 7 | 3pm3.2i | ⊢ ( ( 1 / 2 ) ∈ ℂ ∧ 2 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ) |
| 124 | 1 3 | nvsass | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( ( 1 / 2 ) ∈ ℂ ∧ 2 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ) ) → ( ( ( 1 / 2 ) · 2 ) 𝑆 𝐵 ) = ( ( 1 / 2 ) 𝑆 ( 2 𝑆 𝐵 ) ) ) |
| 125 | 13 123 124 | mp2an | ⊢ ( ( ( 1 / 2 ) · 2 ) 𝑆 𝐵 ) = ( ( 1 / 2 ) 𝑆 ( 2 𝑆 𝐵 ) ) |
| 126 | 68 | oveq1i | ⊢ ( ( ( 1 / 2 ) · 2 ) 𝑆 𝐵 ) = ( 1 𝑆 𝐵 ) |
| 127 | 122 125 126 | 3eqtr2i | ⊢ ( ( 1 / 2 ) 𝑆 ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( ( - 1 𝑆 𝐴 ) 𝐺 𝐵 ) ) ) = ( 1 𝑆 𝐵 ) |
| 128 | 107 127 92 | 3eqtri | ⊢ ( ( ( 1 / 2 ) 𝑆 ( 𝐴 𝐺 𝐵 ) ) 𝐺 ( - 1 𝑆 ( ( 1 / 2 ) 𝑆 ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) ) ) ) = 𝐵 |
| 129 | 128 | oveq1i | ⊢ ( ( ( ( 1 / 2 ) 𝑆 ( 𝐴 𝐺 𝐵 ) ) 𝐺 ( - 1 𝑆 ( ( 1 / 2 ) 𝑆 ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) ) ) ) 𝑃 𝐶 ) = ( 𝐵 𝑃 𝐶 ) |
| 130 | 74 129 | oveq12i | ⊢ ( ( ( ( ( 1 / 2 ) 𝑆 ( 𝐴 𝐺 𝐵 ) ) 𝐺 ( ( 1 / 2 ) 𝑆 ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) ) ) 𝑃 𝐶 ) + ( ( ( ( 1 / 2 ) 𝑆 ( 𝐴 𝐺 𝐵 ) ) 𝐺 ( - 1 𝑆 ( ( 1 / 2 ) 𝑆 ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) ) ) ) 𝑃 𝐶 ) ) = ( ( 𝐴 𝑃 𝐶 ) + ( 𝐵 𝑃 𝐶 ) ) |
| 131 | 27 35 130 | 3eqtr2i | ⊢ ( ( 𝐴 𝐺 𝐵 ) 𝑃 𝐶 ) = ( ( 𝐴 𝑃 𝐶 ) + ( 𝐵 𝑃 𝐶 ) ) |