This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The vector space component of a normed complex vector space. (Contributed by NM, 28-Nov-2006) (Revised by Mario Carneiro, 21-Dec-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | nvvc.1 | ⊢ 𝑊 = ( 1st ‘ 𝑈 ) | |
| Assertion | nvvc | ⊢ ( 𝑈 ∈ NrmCVec → 𝑊 ∈ CVecOLD ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nvvc.1 | ⊢ 𝑊 = ( 1st ‘ 𝑈 ) | |
| 2 | eqid | ⊢ ( +𝑣 ‘ 𝑈 ) = ( +𝑣 ‘ 𝑈 ) | |
| 3 | eqid | ⊢ ( ·𝑠OLD ‘ 𝑈 ) = ( ·𝑠OLD ‘ 𝑈 ) | |
| 4 | 1 2 3 | nvvop | ⊢ ( 𝑈 ∈ NrmCVec → 𝑊 = 〈 ( +𝑣 ‘ 𝑈 ) , ( ·𝑠OLD ‘ 𝑈 ) 〉 ) |
| 5 | eqid | ⊢ ( BaseSet ‘ 𝑈 ) = ( BaseSet ‘ 𝑈 ) | |
| 6 | eqid | ⊢ ( 0vec ‘ 𝑈 ) = ( 0vec ‘ 𝑈 ) | |
| 7 | eqid | ⊢ ( normCV ‘ 𝑈 ) = ( normCV ‘ 𝑈 ) | |
| 8 | 5 2 3 6 7 | nvi | ⊢ ( 𝑈 ∈ NrmCVec → ( 〈 ( +𝑣 ‘ 𝑈 ) , ( ·𝑠OLD ‘ 𝑈 ) 〉 ∈ CVecOLD ∧ ( normCV ‘ 𝑈 ) : ( BaseSet ‘ 𝑈 ) ⟶ ℝ ∧ ∀ 𝑥 ∈ ( BaseSet ‘ 𝑈 ) ( ( ( ( normCV ‘ 𝑈 ) ‘ 𝑥 ) = 0 → 𝑥 = ( 0vec ‘ 𝑈 ) ) ∧ ∀ 𝑦 ∈ ℂ ( ( normCV ‘ 𝑈 ) ‘ ( 𝑦 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( ( normCV ‘ 𝑈 ) ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ ( BaseSet ‘ 𝑈 ) ( ( normCV ‘ 𝑈 ) ‘ ( 𝑥 ( +𝑣 ‘ 𝑈 ) 𝑦 ) ) ≤ ( ( ( normCV ‘ 𝑈 ) ‘ 𝑥 ) + ( ( normCV ‘ 𝑈 ) ‘ 𝑦 ) ) ) ) ) |
| 9 | 8 | simp1d | ⊢ ( 𝑈 ∈ NrmCVec → 〈 ( +𝑣 ‘ 𝑈 ) , ( ·𝑠OLD ‘ 𝑈 ) 〉 ∈ CVecOLD ) |
| 10 | 4 9 | eqeltrd | ⊢ ( 𝑈 ∈ NrmCVec → 𝑊 ∈ CVecOLD ) |