This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equation 6.48 of Ponnusamy p. 362. (Contributed by NM, 26-Apr-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ip1i.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| ip1i.2 | ⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) | ||
| ip1i.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑈 ) | ||
| ip1i.7 | ⊢ 𝑃 = ( ·𝑖OLD ‘ 𝑈 ) | ||
| ip1i.9 | ⊢ 𝑈 ∈ CPreHilOLD | ||
| ip2i.8 | ⊢ 𝐴 ∈ 𝑋 | ||
| ip2i.9 | ⊢ 𝐵 ∈ 𝑋 | ||
| Assertion | ip2i | ⊢ ( ( 2 𝑆 𝐴 ) 𝑃 𝐵 ) = ( 2 · ( 𝐴 𝑃 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ip1i.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | ip1i.2 | ⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) | |
| 3 | ip1i.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑈 ) | |
| 4 | ip1i.7 | ⊢ 𝑃 = ( ·𝑖OLD ‘ 𝑈 ) | |
| 5 | ip1i.9 | ⊢ 𝑈 ∈ CPreHilOLD | |
| 6 | ip2i.8 | ⊢ 𝐴 ∈ 𝑋 | |
| 7 | ip2i.9 | ⊢ 𝐵 ∈ 𝑋 | |
| 8 | 5 | phnvi | ⊢ 𝑈 ∈ NrmCVec |
| 9 | 1 2 | nvgcl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 𝐺 𝐴 ) ∈ 𝑋 ) |
| 10 | 8 6 6 9 | mp3an | ⊢ ( 𝐴 𝐺 𝐴 ) ∈ 𝑋 |
| 11 | 1 4 | dipcl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 𝐺 𝐴 ) ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 𝐺 𝐴 ) 𝑃 𝐵 ) ∈ ℂ ) |
| 12 | 8 10 7 11 | mp3an | ⊢ ( ( 𝐴 𝐺 𝐴 ) 𝑃 𝐵 ) ∈ ℂ |
| 13 | 12 | addridi | ⊢ ( ( ( 𝐴 𝐺 𝐴 ) 𝑃 𝐵 ) + 0 ) = ( ( 𝐴 𝐺 𝐴 ) 𝑃 𝐵 ) |
| 14 | eqid | ⊢ ( 0vec ‘ 𝑈 ) = ( 0vec ‘ 𝑈 ) | |
| 15 | 1 2 3 14 | nvrinv | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 𝐺 ( - 1 𝑆 𝐴 ) ) = ( 0vec ‘ 𝑈 ) ) |
| 16 | 8 6 15 | mp2an | ⊢ ( 𝐴 𝐺 ( - 1 𝑆 𝐴 ) ) = ( 0vec ‘ 𝑈 ) |
| 17 | 16 | oveq1i | ⊢ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐴 ) ) 𝑃 𝐵 ) = ( ( 0vec ‘ 𝑈 ) 𝑃 𝐵 ) |
| 18 | 1 14 4 | dip0l | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ) → ( ( 0vec ‘ 𝑈 ) 𝑃 𝐵 ) = 0 ) |
| 19 | 8 7 18 | mp2an | ⊢ ( ( 0vec ‘ 𝑈 ) 𝑃 𝐵 ) = 0 |
| 20 | 17 19 | eqtri | ⊢ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐴 ) ) 𝑃 𝐵 ) = 0 |
| 21 | 20 | oveq2i | ⊢ ( ( ( 𝐴 𝐺 𝐴 ) 𝑃 𝐵 ) + ( ( 𝐴 𝐺 ( - 1 𝑆 𝐴 ) ) 𝑃 𝐵 ) ) = ( ( ( 𝐴 𝐺 𝐴 ) 𝑃 𝐵 ) + 0 ) |
| 22 | df-2 | ⊢ 2 = ( 1 + 1 ) | |
| 23 | 22 | oveq1i | ⊢ ( 2 𝑆 𝐴 ) = ( ( 1 + 1 ) 𝑆 𝐴 ) |
| 24 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 25 | 24 24 6 | 3pm3.2i | ⊢ ( 1 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝐴 ∈ 𝑋 ) |
| 26 | 1 2 3 | nvdir | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 1 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝐴 ∈ 𝑋 ) ) → ( ( 1 + 1 ) 𝑆 𝐴 ) = ( ( 1 𝑆 𝐴 ) 𝐺 ( 1 𝑆 𝐴 ) ) ) |
| 27 | 8 25 26 | mp2an | ⊢ ( ( 1 + 1 ) 𝑆 𝐴 ) = ( ( 1 𝑆 𝐴 ) 𝐺 ( 1 𝑆 𝐴 ) ) |
| 28 | 1 3 | nvsid | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 1 𝑆 𝐴 ) = 𝐴 ) |
| 29 | 8 6 28 | mp2an | ⊢ ( 1 𝑆 𝐴 ) = 𝐴 |
| 30 | 29 29 | oveq12i | ⊢ ( ( 1 𝑆 𝐴 ) 𝐺 ( 1 𝑆 𝐴 ) ) = ( 𝐴 𝐺 𝐴 ) |
| 31 | 27 30 | eqtri | ⊢ ( ( 1 + 1 ) 𝑆 𝐴 ) = ( 𝐴 𝐺 𝐴 ) |
| 32 | 23 31 | eqtri | ⊢ ( 2 𝑆 𝐴 ) = ( 𝐴 𝐺 𝐴 ) |
| 33 | 32 | oveq1i | ⊢ ( ( 2 𝑆 𝐴 ) 𝑃 𝐵 ) = ( ( 𝐴 𝐺 𝐴 ) 𝑃 𝐵 ) |
| 34 | 13 21 33 | 3eqtr4ri | ⊢ ( ( 2 𝑆 𝐴 ) 𝑃 𝐵 ) = ( ( ( 𝐴 𝐺 𝐴 ) 𝑃 𝐵 ) + ( ( 𝐴 𝐺 ( - 1 𝑆 𝐴 ) ) 𝑃 𝐵 ) ) |
| 35 | 1 2 3 4 5 6 6 7 | ip1i | ⊢ ( ( ( 𝐴 𝐺 𝐴 ) 𝑃 𝐵 ) + ( ( 𝐴 𝐺 ( - 1 𝑆 𝐴 ) ) 𝑃 𝐵 ) ) = ( 2 · ( 𝐴 𝑃 𝐵 ) ) |
| 36 | 34 35 | eqtri | ⊢ ( ( 2 𝑆 𝐴 ) 𝑃 𝐵 ) = ( 2 · ( 𝐴 𝑃 𝐵 ) ) |