This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Commutative/associative law for Abelian groups. (Contributed by NM, 26-Apr-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ablcom.1 | ⊢ 𝑋 = ran 𝐺 | |
| Assertion | ablo4 | ⊢ ( ( 𝐺 ∈ AbelOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) → ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( 𝐶 𝐺 𝐷 ) ) = ( ( 𝐴 𝐺 𝐶 ) 𝐺 ( 𝐵 𝐺 𝐷 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ablcom.1 | ⊢ 𝑋 = ran 𝐺 | |
| 2 | simprll | ⊢ ( ( 𝐺 ∈ AbelOp ∧ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) ) → 𝐴 ∈ 𝑋 ) | |
| 3 | simprlr | ⊢ ( ( 𝐺 ∈ AbelOp ∧ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) ) → 𝐵 ∈ 𝑋 ) | |
| 4 | simprrl | ⊢ ( ( 𝐺 ∈ AbelOp ∧ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) ) → 𝐶 ∈ 𝑋 ) | |
| 5 | 2 3 4 | 3jca | ⊢ ( ( 𝐺 ∈ AbelOp ∧ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) ) → ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) |
| 6 | 1 | ablo32 | ⊢ ( ( 𝐺 ∈ AbelOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝐺 𝐵 ) 𝐺 𝐶 ) = ( ( 𝐴 𝐺 𝐶 ) 𝐺 𝐵 ) ) |
| 7 | 5 6 | syldan | ⊢ ( ( 𝐺 ∈ AbelOp ∧ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) ) → ( ( 𝐴 𝐺 𝐵 ) 𝐺 𝐶 ) = ( ( 𝐴 𝐺 𝐶 ) 𝐺 𝐵 ) ) |
| 8 | 7 | oveq1d | ⊢ ( ( 𝐺 ∈ AbelOp ∧ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) ) → ( ( ( 𝐴 𝐺 𝐵 ) 𝐺 𝐶 ) 𝐺 𝐷 ) = ( ( ( 𝐴 𝐺 𝐶 ) 𝐺 𝐵 ) 𝐺 𝐷 ) ) |
| 9 | ablogrpo | ⊢ ( 𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp ) | |
| 10 | 1 | grpocl | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐺 𝐵 ) ∈ 𝑋 ) |
| 11 | 10 | 3expb | ⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝐴 𝐺 𝐵 ) ∈ 𝑋 ) |
| 12 | 11 | adantrr | ⊢ ( ( 𝐺 ∈ GrpOp ∧ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) ) → ( 𝐴 𝐺 𝐵 ) ∈ 𝑋 ) |
| 13 | simprrl | ⊢ ( ( 𝐺 ∈ GrpOp ∧ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) ) → 𝐶 ∈ 𝑋 ) | |
| 14 | simprrr | ⊢ ( ( 𝐺 ∈ GrpOp ∧ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) ) → 𝐷 ∈ 𝑋 ) | |
| 15 | 12 13 14 | 3jca | ⊢ ( ( 𝐺 ∈ GrpOp ∧ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) ) → ( ( 𝐴 𝐺 𝐵 ) ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) |
| 16 | 1 | grpoass | ⊢ ( ( 𝐺 ∈ GrpOp ∧ ( ( 𝐴 𝐺 𝐵 ) ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) → ( ( ( 𝐴 𝐺 𝐵 ) 𝐺 𝐶 ) 𝐺 𝐷 ) = ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( 𝐶 𝐺 𝐷 ) ) ) |
| 17 | 15 16 | syldan | ⊢ ( ( 𝐺 ∈ GrpOp ∧ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) ) → ( ( ( 𝐴 𝐺 𝐵 ) 𝐺 𝐶 ) 𝐺 𝐷 ) = ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( 𝐶 𝐺 𝐷 ) ) ) |
| 18 | 9 17 | sylan | ⊢ ( ( 𝐺 ∈ AbelOp ∧ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) ) → ( ( ( 𝐴 𝐺 𝐵 ) 𝐺 𝐶 ) 𝐺 𝐷 ) = ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( 𝐶 𝐺 𝐷 ) ) ) |
| 19 | 1 | grpocl | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐴 𝐺 𝐶 ) ∈ 𝑋 ) |
| 20 | 19 | 3expb | ⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 𝐺 𝐶 ) ∈ 𝑋 ) |
| 21 | 20 | adantrlr | ⊢ ( ( 𝐺 ∈ GrpOp ∧ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 𝐺 𝐶 ) ∈ 𝑋 ) |
| 22 | 21 | adantrrr | ⊢ ( ( 𝐺 ∈ GrpOp ∧ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) ) → ( 𝐴 𝐺 𝐶 ) ∈ 𝑋 ) |
| 23 | simprlr | ⊢ ( ( 𝐺 ∈ GrpOp ∧ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) ) → 𝐵 ∈ 𝑋 ) | |
| 24 | 22 23 14 | 3jca | ⊢ ( ( 𝐺 ∈ GrpOp ∧ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) ) → ( ( 𝐴 𝐺 𝐶 ) ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) |
| 25 | 1 | grpoass | ⊢ ( ( 𝐺 ∈ GrpOp ∧ ( ( 𝐴 𝐺 𝐶 ) ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) → ( ( ( 𝐴 𝐺 𝐶 ) 𝐺 𝐵 ) 𝐺 𝐷 ) = ( ( 𝐴 𝐺 𝐶 ) 𝐺 ( 𝐵 𝐺 𝐷 ) ) ) |
| 26 | 24 25 | syldan | ⊢ ( ( 𝐺 ∈ GrpOp ∧ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) ) → ( ( ( 𝐴 𝐺 𝐶 ) 𝐺 𝐵 ) 𝐺 𝐷 ) = ( ( 𝐴 𝐺 𝐶 ) 𝐺 ( 𝐵 𝐺 𝐷 ) ) ) |
| 27 | 9 26 | sylan | ⊢ ( ( 𝐺 ∈ AbelOp ∧ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) ) → ( ( ( 𝐴 𝐺 𝐶 ) 𝐺 𝐵 ) 𝐺 𝐷 ) = ( ( 𝐴 𝐺 𝐶 ) 𝐺 ( 𝐵 𝐺 𝐷 ) ) ) |
| 28 | 8 18 27 | 3eqtr3d | ⊢ ( ( 𝐺 ∈ AbelOp ∧ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) ) → ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( 𝐶 𝐺 𝐷 ) ) = ( ( 𝐴 𝐺 𝐶 ) 𝐺 ( 𝐵 𝐺 𝐷 ) ) ) |
| 29 | 28 | 3impb | ⊢ ( ( 𝐺 ∈ AbelOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) → ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( 𝐶 𝐺 𝐷 ) ) = ( ( 𝐴 𝐺 𝐶 ) 𝐺 ( 𝐵 𝐺 𝐷 ) ) ) |