This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equation 6.47 of Ponnusamy p. 362. (Contributed by NM, 27-Apr-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ip1i.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| ip1i.2 | ⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) | ||
| ip1i.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑈 ) | ||
| ip1i.7 | ⊢ 𝑃 = ( ·𝑖OLD ‘ 𝑈 ) | ||
| ip1i.9 | ⊢ 𝑈 ∈ CPreHilOLD | ||
| ip1i.a | ⊢ 𝐴 ∈ 𝑋 | ||
| ip1i.b | ⊢ 𝐵 ∈ 𝑋 | ||
| ip1i.c | ⊢ 𝐶 ∈ 𝑋 | ||
| Assertion | ip1i | ⊢ ( ( ( 𝐴 𝐺 𝐵 ) 𝑃 𝐶 ) + ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝑃 𝐶 ) ) = ( 2 · ( 𝐴 𝑃 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ip1i.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | ip1i.2 | ⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) | |
| 3 | ip1i.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑈 ) | |
| 4 | ip1i.7 | ⊢ 𝑃 = ( ·𝑖OLD ‘ 𝑈 ) | |
| 5 | ip1i.9 | ⊢ 𝑈 ∈ CPreHilOLD | |
| 6 | ip1i.a | ⊢ 𝐴 ∈ 𝑋 | |
| 7 | ip1i.b | ⊢ 𝐵 ∈ 𝑋 | |
| 8 | ip1i.c | ⊢ 𝐶 ∈ 𝑋 | |
| 9 | eqid | ⊢ ( normCV ‘ 𝑈 ) = ( normCV ‘ 𝑈 ) | |
| 10 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 11 | 1 2 3 4 5 6 7 8 9 10 | ip1ilem | ⊢ ( ( ( 𝐴 𝐺 𝐵 ) 𝑃 𝐶 ) + ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝑃 𝐶 ) ) = ( 2 · ( 𝐴 𝑃 𝐶 ) ) |