This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The involution function in a star ring distributes over multiplication, with a change in the order of the factors. (Contributed by Mario Carneiro, 6-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | srngcl.i | ⊢ ∗ = ( *𝑟 ‘ 𝑅 ) | |
| srngcl.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | ||
| srngmul.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
| Assertion | srngmul | ⊢ ( ( 𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ∗ ‘ ( 𝑋 · 𝑌 ) ) = ( ( ∗ ‘ 𝑌 ) · ( ∗ ‘ 𝑋 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | srngcl.i | ⊢ ∗ = ( *𝑟 ‘ 𝑅 ) | |
| 2 | srngcl.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 3 | srngmul.t | ⊢ · = ( .r ‘ 𝑅 ) | |
| 4 | eqid | ⊢ ( oppr ‘ 𝑅 ) = ( oppr ‘ 𝑅 ) | |
| 5 | eqid | ⊢ ( *rf ‘ 𝑅 ) = ( *rf ‘ 𝑅 ) | |
| 6 | 4 5 | srngrhm | ⊢ ( 𝑅 ∈ *-Ring → ( *rf ‘ 𝑅 ) ∈ ( 𝑅 RingHom ( oppr ‘ 𝑅 ) ) ) |
| 7 | eqid | ⊢ ( .r ‘ ( oppr ‘ 𝑅 ) ) = ( .r ‘ ( oppr ‘ 𝑅 ) ) | |
| 8 | 2 3 7 | rhmmul | ⊢ ( ( ( *rf ‘ 𝑅 ) ∈ ( 𝑅 RingHom ( oppr ‘ 𝑅 ) ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( *rf ‘ 𝑅 ) ‘ ( 𝑋 · 𝑌 ) ) = ( ( ( *rf ‘ 𝑅 ) ‘ 𝑋 ) ( .r ‘ ( oppr ‘ 𝑅 ) ) ( ( *rf ‘ 𝑅 ) ‘ 𝑌 ) ) ) |
| 9 | 6 8 | syl3an1 | ⊢ ( ( 𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( *rf ‘ 𝑅 ) ‘ ( 𝑋 · 𝑌 ) ) = ( ( ( *rf ‘ 𝑅 ) ‘ 𝑋 ) ( .r ‘ ( oppr ‘ 𝑅 ) ) ( ( *rf ‘ 𝑅 ) ‘ 𝑌 ) ) ) |
| 10 | 2 3 4 7 | opprmul | ⊢ ( ( ( *rf ‘ 𝑅 ) ‘ 𝑋 ) ( .r ‘ ( oppr ‘ 𝑅 ) ) ( ( *rf ‘ 𝑅 ) ‘ 𝑌 ) ) = ( ( ( *rf ‘ 𝑅 ) ‘ 𝑌 ) · ( ( *rf ‘ 𝑅 ) ‘ 𝑋 ) ) |
| 11 | 9 10 | eqtrdi | ⊢ ( ( 𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( *rf ‘ 𝑅 ) ‘ ( 𝑋 · 𝑌 ) ) = ( ( ( *rf ‘ 𝑅 ) ‘ 𝑌 ) · ( ( *rf ‘ 𝑅 ) ‘ 𝑋 ) ) ) |
| 12 | srngring | ⊢ ( 𝑅 ∈ *-Ring → 𝑅 ∈ Ring ) | |
| 13 | 2 3 | ringcl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 · 𝑌 ) ∈ 𝐵 ) |
| 14 | 12 13 | syl3an1 | ⊢ ( ( 𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 · 𝑌 ) ∈ 𝐵 ) |
| 15 | 2 1 5 | stafval | ⊢ ( ( 𝑋 · 𝑌 ) ∈ 𝐵 → ( ( *rf ‘ 𝑅 ) ‘ ( 𝑋 · 𝑌 ) ) = ( ∗ ‘ ( 𝑋 · 𝑌 ) ) ) |
| 16 | 14 15 | syl | ⊢ ( ( 𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( *rf ‘ 𝑅 ) ‘ ( 𝑋 · 𝑌 ) ) = ( ∗ ‘ ( 𝑋 · 𝑌 ) ) ) |
| 17 | 2 1 5 | stafval | ⊢ ( 𝑌 ∈ 𝐵 → ( ( *rf ‘ 𝑅 ) ‘ 𝑌 ) = ( ∗ ‘ 𝑌 ) ) |
| 18 | 17 | 3ad2ant3 | ⊢ ( ( 𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( *rf ‘ 𝑅 ) ‘ 𝑌 ) = ( ∗ ‘ 𝑌 ) ) |
| 19 | 2 1 5 | stafval | ⊢ ( 𝑋 ∈ 𝐵 → ( ( *rf ‘ 𝑅 ) ‘ 𝑋 ) = ( ∗ ‘ 𝑋 ) ) |
| 20 | 19 | 3ad2ant2 | ⊢ ( ( 𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( *rf ‘ 𝑅 ) ‘ 𝑋 ) = ( ∗ ‘ 𝑋 ) ) |
| 21 | 18 20 | oveq12d | ⊢ ( ( 𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ( *rf ‘ 𝑅 ) ‘ 𝑌 ) · ( ( *rf ‘ 𝑅 ) ‘ 𝑋 ) ) = ( ( ∗ ‘ 𝑌 ) · ( ∗ ‘ 𝑋 ) ) ) |
| 22 | 11 16 21 | 3eqtr3d | ⊢ ( ( 𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ∗ ‘ ( 𝑋 · 𝑌 ) ) = ( ( ∗ ‘ 𝑌 ) · ( ∗ ‘ 𝑋 ) ) ) |