This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distributive law for inner product subtraction. (Contributed by NM, 20-Nov-2007) (Revised by Mario Carneiro, 7-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | phlsrng.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| phllmhm.h | ⊢ , = ( ·𝑖 ‘ 𝑊 ) | ||
| phllmhm.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | ||
| ipsubdir.m | ⊢ − = ( -g ‘ 𝑊 ) | ||
| ipsubdir.s | ⊢ 𝑆 = ( -g ‘ 𝐹 ) | ||
| Assertion | ipsubdir | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( ( 𝐴 − 𝐵 ) , 𝐶 ) = ( ( 𝐴 , 𝐶 ) 𝑆 ( 𝐵 , 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | phlsrng.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 2 | phllmhm.h | ⊢ , = ( ·𝑖 ‘ 𝑊 ) | |
| 3 | phllmhm.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 4 | ipsubdir.m | ⊢ − = ( -g ‘ 𝑊 ) | |
| 5 | ipsubdir.s | ⊢ 𝑆 = ( -g ‘ 𝐹 ) | |
| 6 | simpl | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → 𝑊 ∈ PreHil ) | |
| 7 | phllmod | ⊢ ( 𝑊 ∈ PreHil → 𝑊 ∈ LMod ) | |
| 8 | 7 | adantr | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → 𝑊 ∈ LMod ) |
| 9 | lmodgrp | ⊢ ( 𝑊 ∈ LMod → 𝑊 ∈ Grp ) | |
| 10 | 8 9 | syl | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → 𝑊 ∈ Grp ) |
| 11 | simpr1 | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → 𝐴 ∈ 𝑉 ) | |
| 12 | simpr2 | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → 𝐵 ∈ 𝑉 ) | |
| 13 | 3 4 | grpsubcl | ⊢ ( ( 𝑊 ∈ Grp ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 − 𝐵 ) ∈ 𝑉 ) |
| 14 | 10 11 12 13 | syl3anc | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( 𝐴 − 𝐵 ) ∈ 𝑉 ) |
| 15 | simpr3 | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → 𝐶 ∈ 𝑉 ) | |
| 16 | eqid | ⊢ ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) | |
| 17 | eqid | ⊢ ( +g ‘ 𝐹 ) = ( +g ‘ 𝐹 ) | |
| 18 | 1 2 3 16 17 | ipdir | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( ( 𝐴 − 𝐵 ) ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( ( ( 𝐴 − 𝐵 ) ( +g ‘ 𝑊 ) 𝐵 ) , 𝐶 ) = ( ( ( 𝐴 − 𝐵 ) , 𝐶 ) ( +g ‘ 𝐹 ) ( 𝐵 , 𝐶 ) ) ) |
| 19 | 6 14 12 15 18 | syl13anc | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( ( ( 𝐴 − 𝐵 ) ( +g ‘ 𝑊 ) 𝐵 ) , 𝐶 ) = ( ( ( 𝐴 − 𝐵 ) , 𝐶 ) ( +g ‘ 𝐹 ) ( 𝐵 , 𝐶 ) ) ) |
| 20 | 3 16 4 | grpnpcan | ⊢ ( ( 𝑊 ∈ Grp ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( 𝐴 − 𝐵 ) ( +g ‘ 𝑊 ) 𝐵 ) = 𝐴 ) |
| 21 | 10 11 12 20 | syl3anc | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( ( 𝐴 − 𝐵 ) ( +g ‘ 𝑊 ) 𝐵 ) = 𝐴 ) |
| 22 | 21 | oveq1d | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( ( ( 𝐴 − 𝐵 ) ( +g ‘ 𝑊 ) 𝐵 ) , 𝐶 ) = ( 𝐴 , 𝐶 ) ) |
| 23 | 19 22 | eqtr3d | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( ( ( 𝐴 − 𝐵 ) , 𝐶 ) ( +g ‘ 𝐹 ) ( 𝐵 , 𝐶 ) ) = ( 𝐴 , 𝐶 ) ) |
| 24 | 1 | lmodfgrp | ⊢ ( 𝑊 ∈ LMod → 𝐹 ∈ Grp ) |
| 25 | 8 24 | syl | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → 𝐹 ∈ Grp ) |
| 26 | eqid | ⊢ ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 ) | |
| 27 | 1 2 3 26 | ipcl | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ( 𝐴 , 𝐶 ) ∈ ( Base ‘ 𝐹 ) ) |
| 28 | 6 11 15 27 | syl3anc | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( 𝐴 , 𝐶 ) ∈ ( Base ‘ 𝐹 ) ) |
| 29 | 1 2 3 26 | ipcl | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ( 𝐵 , 𝐶 ) ∈ ( Base ‘ 𝐹 ) ) |
| 30 | 6 12 15 29 | syl3anc | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( 𝐵 , 𝐶 ) ∈ ( Base ‘ 𝐹 ) ) |
| 31 | 1 2 3 26 | ipcl | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 − 𝐵 ) ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ( ( 𝐴 − 𝐵 ) , 𝐶 ) ∈ ( Base ‘ 𝐹 ) ) |
| 32 | 6 14 15 31 | syl3anc | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( ( 𝐴 − 𝐵 ) , 𝐶 ) ∈ ( Base ‘ 𝐹 ) ) |
| 33 | 26 17 5 | grpsubadd | ⊢ ( ( 𝐹 ∈ Grp ∧ ( ( 𝐴 , 𝐶 ) ∈ ( Base ‘ 𝐹 ) ∧ ( 𝐵 , 𝐶 ) ∈ ( Base ‘ 𝐹 ) ∧ ( ( 𝐴 − 𝐵 ) , 𝐶 ) ∈ ( Base ‘ 𝐹 ) ) ) → ( ( ( 𝐴 , 𝐶 ) 𝑆 ( 𝐵 , 𝐶 ) ) = ( ( 𝐴 − 𝐵 ) , 𝐶 ) ↔ ( ( ( 𝐴 − 𝐵 ) , 𝐶 ) ( +g ‘ 𝐹 ) ( 𝐵 , 𝐶 ) ) = ( 𝐴 , 𝐶 ) ) ) |
| 34 | 25 28 30 32 33 | syl13anc | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( ( ( 𝐴 , 𝐶 ) 𝑆 ( 𝐵 , 𝐶 ) ) = ( ( 𝐴 − 𝐵 ) , 𝐶 ) ↔ ( ( ( 𝐴 − 𝐵 ) , 𝐶 ) ( +g ‘ 𝐹 ) ( 𝐵 , 𝐶 ) ) = ( 𝐴 , 𝐶 ) ) ) |
| 35 | 23 34 | mpbird | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( ( 𝐴 , 𝐶 ) 𝑆 ( 𝐵 , 𝐶 ) ) = ( ( 𝐴 − 𝐵 ) , 𝐶 ) ) |
| 36 | 35 | eqcomd | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( ( 𝐴 − 𝐵 ) , 𝐶 ) = ( ( 𝐴 , 𝐶 ) 𝑆 ( 𝐵 , 𝐶 ) ) ) |