This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Associative-type law for group subtraction and addition. (Contributed by NM, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ablsubadd.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| ablsubadd.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| ablsubadd.m | ⊢ − = ( -g ‘ 𝐺 ) | ||
| Assertion | abladdsub | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 + 𝑌 ) − 𝑍 ) = ( ( 𝑋 − 𝑍 ) + 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ablsubadd.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | ablsubadd.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 3 | ablsubadd.m | ⊢ − = ( -g ‘ 𝐺 ) | |
| 4 | 1 2 | ablcom | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 + 𝑌 ) = ( 𝑌 + 𝑋 ) ) |
| 5 | 4 | 3adant3r3 | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 + 𝑌 ) = ( 𝑌 + 𝑋 ) ) |
| 6 | 5 | oveq1d | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 + 𝑌 ) − 𝑍 ) = ( ( 𝑌 + 𝑋 ) − 𝑍 ) ) |
| 7 | ablgrp | ⊢ ( 𝐺 ∈ Abel → 𝐺 ∈ Grp ) | |
| 8 | 7 | adantr | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝐺 ∈ Grp ) |
| 9 | simpr2 | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑌 ∈ 𝐵 ) | |
| 10 | simpr1 | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑋 ∈ 𝐵 ) | |
| 11 | simpr3 | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑍 ∈ 𝐵 ) | |
| 12 | 1 2 3 | grpaddsubass | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑌 + 𝑋 ) − 𝑍 ) = ( 𝑌 + ( 𝑋 − 𝑍 ) ) ) |
| 13 | 8 9 10 11 12 | syl13anc | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑌 + 𝑋 ) − 𝑍 ) = ( 𝑌 + ( 𝑋 − 𝑍 ) ) ) |
| 14 | simpl | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝐺 ∈ Abel ) | |
| 15 | 1 3 | grpsubcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑋 − 𝑍 ) ∈ 𝐵 ) |
| 16 | 8 10 11 15 | syl3anc | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 − 𝑍 ) ∈ 𝐵 ) |
| 17 | 1 2 | ablcom | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝑌 ∈ 𝐵 ∧ ( 𝑋 − 𝑍 ) ∈ 𝐵 ) → ( 𝑌 + ( 𝑋 − 𝑍 ) ) = ( ( 𝑋 − 𝑍 ) + 𝑌 ) ) |
| 18 | 14 9 16 17 | syl3anc | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑌 + ( 𝑋 − 𝑍 ) ) = ( ( 𝑋 − 𝑍 ) + 𝑌 ) ) |
| 19 | 6 13 18 | 3eqtrd | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 + 𝑌 ) − 𝑍 ) = ( ( 𝑋 − 𝑍 ) + 𝑌 ) ) |