This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Law for double subtraction. (Contributed by NM, 7-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ablsubadd.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| ablsubadd.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| ablsubadd.m | ⊢ − = ( -g ‘ 𝐺 ) | ||
| ablsubsub.g | ⊢ ( 𝜑 → 𝐺 ∈ Abel ) | ||
| ablsubsub.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| ablsubsub.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| ablsubsub.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | ||
| Assertion | ablsubsub4 | ⊢ ( 𝜑 → ( ( 𝑋 − 𝑌 ) − 𝑍 ) = ( 𝑋 − ( 𝑌 + 𝑍 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ablsubadd.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | ablsubadd.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 3 | ablsubadd.m | ⊢ − = ( -g ‘ 𝐺 ) | |
| 4 | ablsubsub.g | ⊢ ( 𝜑 → 𝐺 ∈ Abel ) | |
| 5 | ablsubsub.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 6 | ablsubsub.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 7 | ablsubsub.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | |
| 8 | ablgrp | ⊢ ( 𝐺 ∈ Abel → 𝐺 ∈ Grp ) | |
| 9 | 4 8 | syl | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
| 10 | 1 3 | grpsubcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 − 𝑌 ) ∈ 𝐵 ) |
| 11 | 9 5 6 10 | syl3anc | ⊢ ( 𝜑 → ( 𝑋 − 𝑌 ) ∈ 𝐵 ) |
| 12 | eqid | ⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) | |
| 13 | 1 2 12 3 | grpsubval | ⊢ ( ( ( 𝑋 − 𝑌 ) ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( ( 𝑋 − 𝑌 ) − 𝑍 ) = ( ( 𝑋 − 𝑌 ) + ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) ) |
| 14 | 11 7 13 | syl2anc | ⊢ ( 𝜑 → ( ( 𝑋 − 𝑌 ) − 𝑍 ) = ( ( 𝑋 − 𝑌 ) + ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) ) |
| 15 | 1 12 | grpinvcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑍 ∈ 𝐵 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ∈ 𝐵 ) |
| 16 | 9 7 15 | syl2anc | ⊢ ( 𝜑 → ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ∈ 𝐵 ) |
| 17 | 1 2 3 4 5 6 16 | ablsubsub | ⊢ ( 𝜑 → ( 𝑋 − ( 𝑌 − ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) ) = ( ( 𝑋 − 𝑌 ) + ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) ) |
| 18 | 1 2 3 12 9 6 7 | grpsubinv | ⊢ ( 𝜑 → ( 𝑌 − ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) = ( 𝑌 + 𝑍 ) ) |
| 19 | 18 | oveq2d | ⊢ ( 𝜑 → ( 𝑋 − ( 𝑌 − ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) ) = ( 𝑋 − ( 𝑌 + 𝑍 ) ) ) |
| 20 | 14 17 19 | 3eqtr2d | ⊢ ( 𝜑 → ( ( 𝑋 − 𝑌 ) − 𝑍 ) = ( 𝑋 − ( 𝑌 + 𝑍 ) ) ) |