This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equation 6.48 of Ponnusamy p. 362. (Contributed by NM, 26-Apr-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ip1i.1 | |- X = ( BaseSet ` U ) |
|
| ip1i.2 | |- G = ( +v ` U ) |
||
| ip1i.4 | |- S = ( .sOLD ` U ) |
||
| ip1i.7 | |- P = ( .iOLD ` U ) |
||
| ip1i.9 | |- U e. CPreHilOLD |
||
| ip2i.8 | |- A e. X |
||
| ip2i.9 | |- B e. X |
||
| Assertion | ip2i | |- ( ( 2 S A ) P B ) = ( 2 x. ( A P B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ip1i.1 | |- X = ( BaseSet ` U ) |
|
| 2 | ip1i.2 | |- G = ( +v ` U ) |
|
| 3 | ip1i.4 | |- S = ( .sOLD ` U ) |
|
| 4 | ip1i.7 | |- P = ( .iOLD ` U ) |
|
| 5 | ip1i.9 | |- U e. CPreHilOLD |
|
| 6 | ip2i.8 | |- A e. X |
|
| 7 | ip2i.9 | |- B e. X |
|
| 8 | 5 | phnvi | |- U e. NrmCVec |
| 9 | 1 2 | nvgcl | |- ( ( U e. NrmCVec /\ A e. X /\ A e. X ) -> ( A G A ) e. X ) |
| 10 | 8 6 6 9 | mp3an | |- ( A G A ) e. X |
| 11 | 1 4 | dipcl | |- ( ( U e. NrmCVec /\ ( A G A ) e. X /\ B e. X ) -> ( ( A G A ) P B ) e. CC ) |
| 12 | 8 10 7 11 | mp3an | |- ( ( A G A ) P B ) e. CC |
| 13 | 12 | addridi | |- ( ( ( A G A ) P B ) + 0 ) = ( ( A G A ) P B ) |
| 14 | eqid | |- ( 0vec ` U ) = ( 0vec ` U ) |
|
| 15 | 1 2 3 14 | nvrinv | |- ( ( U e. NrmCVec /\ A e. X ) -> ( A G ( -u 1 S A ) ) = ( 0vec ` U ) ) |
| 16 | 8 6 15 | mp2an | |- ( A G ( -u 1 S A ) ) = ( 0vec ` U ) |
| 17 | 16 | oveq1i | |- ( ( A G ( -u 1 S A ) ) P B ) = ( ( 0vec ` U ) P B ) |
| 18 | 1 14 4 | dip0l | |- ( ( U e. NrmCVec /\ B e. X ) -> ( ( 0vec ` U ) P B ) = 0 ) |
| 19 | 8 7 18 | mp2an | |- ( ( 0vec ` U ) P B ) = 0 |
| 20 | 17 19 | eqtri | |- ( ( A G ( -u 1 S A ) ) P B ) = 0 |
| 21 | 20 | oveq2i | |- ( ( ( A G A ) P B ) + ( ( A G ( -u 1 S A ) ) P B ) ) = ( ( ( A G A ) P B ) + 0 ) |
| 22 | df-2 | |- 2 = ( 1 + 1 ) |
|
| 23 | 22 | oveq1i | |- ( 2 S A ) = ( ( 1 + 1 ) S A ) |
| 24 | ax-1cn | |- 1 e. CC |
|
| 25 | 24 24 6 | 3pm3.2i | |- ( 1 e. CC /\ 1 e. CC /\ A e. X ) |
| 26 | 1 2 3 | nvdir | |- ( ( U e. NrmCVec /\ ( 1 e. CC /\ 1 e. CC /\ A e. X ) ) -> ( ( 1 + 1 ) S A ) = ( ( 1 S A ) G ( 1 S A ) ) ) |
| 27 | 8 25 26 | mp2an | |- ( ( 1 + 1 ) S A ) = ( ( 1 S A ) G ( 1 S A ) ) |
| 28 | 1 3 | nvsid | |- ( ( U e. NrmCVec /\ A e. X ) -> ( 1 S A ) = A ) |
| 29 | 8 6 28 | mp2an | |- ( 1 S A ) = A |
| 30 | 29 29 | oveq12i | |- ( ( 1 S A ) G ( 1 S A ) ) = ( A G A ) |
| 31 | 27 30 | eqtri | |- ( ( 1 + 1 ) S A ) = ( A G A ) |
| 32 | 23 31 | eqtri | |- ( 2 S A ) = ( A G A ) |
| 33 | 32 | oveq1i | |- ( ( 2 S A ) P B ) = ( ( A G A ) P B ) |
| 34 | 13 21 33 | 3eqtr4ri | |- ( ( 2 S A ) P B ) = ( ( ( A G A ) P B ) + ( ( A G ( -u 1 S A ) ) P B ) ) |
| 35 | 1 2 3 4 5 6 6 7 | ip1i | |- ( ( ( A G A ) P B ) + ( ( A G ( -u 1 S A ) ) P B ) ) = ( 2 x. ( A P B ) ) |
| 36 | 34 35 | eqtri | |- ( ( 2 S A ) P B ) = ( 2 x. ( A P B ) ) |