This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Theorem *14.202 in WhiteheadRussell p. 189. A biconditional version of iotaval . (Contributed by Andrew Salmon, 11-Jul-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iotavalb | ⊢ ( ∃! 𝑥 𝜑 → ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ↔ ( ℩ 𝑥 𝜑 ) = 𝑦 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iotaval | ⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) → ( ℩ 𝑥 𝜑 ) = 𝑦 ) | |
| 2 | iotasbc | ⊢ ( ∃! 𝑥 𝜑 → ( [ ( ℩ 𝑥 𝜑 ) / 𝑧 ] 𝑧 = 𝑦 ↔ ∃ 𝑧 ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) ∧ 𝑧 = 𝑦 ) ) ) | |
| 3 | iotaexeu | ⊢ ( ∃! 𝑥 𝜑 → ( ℩ 𝑥 𝜑 ) ∈ V ) | |
| 4 | eqsbc1 | ⊢ ( ( ℩ 𝑥 𝜑 ) ∈ V → ( [ ( ℩ 𝑥 𝜑 ) / 𝑧 ] 𝑧 = 𝑦 ↔ ( ℩ 𝑥 𝜑 ) = 𝑦 ) ) | |
| 5 | 3 4 | syl | ⊢ ( ∃! 𝑥 𝜑 → ( [ ( ℩ 𝑥 𝜑 ) / 𝑧 ] 𝑧 = 𝑦 ↔ ( ℩ 𝑥 𝜑 ) = 𝑦 ) ) |
| 6 | 2 5 | bitr3d | ⊢ ( ∃! 𝑥 𝜑 → ( ∃ 𝑧 ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) ∧ 𝑧 = 𝑦 ) ↔ ( ℩ 𝑥 𝜑 ) = 𝑦 ) ) |
| 7 | equequ2 | ⊢ ( 𝑧 = 𝑦 → ( 𝑥 = 𝑧 ↔ 𝑥 = 𝑦 ) ) | |
| 8 | 7 | bibi2d | ⊢ ( 𝑧 = 𝑦 → ( ( 𝜑 ↔ 𝑥 = 𝑧 ) ↔ ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ) |
| 9 | 8 | albidv | ⊢ ( 𝑧 = 𝑦 → ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) ↔ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ) |
| 10 | 9 | biimpac | ⊢ ( ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) ∧ 𝑧 = 𝑦 ) → ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) |
| 11 | 10 | exlimiv | ⊢ ( ∃ 𝑧 ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) ∧ 𝑧 = 𝑦 ) → ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) |
| 12 | 6 11 | biimtrrdi | ⊢ ( ∃! 𝑥 𝜑 → ( ( ℩ 𝑥 𝜑 ) = 𝑦 → ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ) |
| 13 | 1 12 | impbid2 | ⊢ ( ∃! 𝑥 𝜑 → ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ↔ ( ℩ 𝑥 𝜑 ) = 𝑦 ) ) |