This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Theorem *14.205 in WhiteheadRussell p. 190. (Contributed by Andrew Salmon, 11-Jul-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iotasbc5 | ⊢ ( ∃! 𝑥 𝜑 → ( [ ( ℩ 𝑥 𝜑 ) / 𝑦 ] 𝜓 ↔ ∃ 𝑦 ( 𝑦 = ( ℩ 𝑥 𝜑 ) ∧ 𝜓 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbc5 | ⊢ ( [ ( ℩ 𝑥 𝜑 ) / 𝑦 ] 𝜓 ↔ ∃ 𝑦 ( 𝑦 = ( ℩ 𝑥 𝜑 ) ∧ 𝜓 ) ) | |
| 2 | 1 | a1i | ⊢ ( ∃! 𝑥 𝜑 → ( [ ( ℩ 𝑥 𝜑 ) / 𝑦 ] 𝜓 ↔ ∃ 𝑦 ( 𝑦 = ( ℩ 𝑥 𝜑 ) ∧ 𝜓 ) ) ) |