This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Theorem 8.19 in Quine p. 57. This theorem is the fundamental property of iota. (Contributed by Andrew Salmon, 11-Jul-2011) Remove dependency on ax-10 , ax-11 , ax-12 . (Revised by SN, 23-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iotaval | ⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) → ( ℩ 𝑥 𝜑 ) = 𝑦 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abbi | ⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) → { 𝑥 ∣ 𝜑 } = { 𝑥 ∣ 𝑥 = 𝑦 } ) | |
| 2 | df-sn | ⊢ { 𝑦 } = { 𝑥 ∣ 𝑥 = 𝑦 } | |
| 3 | 1 2 | eqtr4di | ⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) → { 𝑥 ∣ 𝜑 } = { 𝑦 } ) |
| 4 | iotaval2 | ⊢ ( { 𝑥 ∣ 𝜑 } = { 𝑦 } → ( ℩ 𝑥 𝜑 ) = 𝑦 ) | |
| 5 | 3 4 | syl | ⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) → ( ℩ 𝑥 𝜑 ) = 𝑦 ) |