This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Theorem *14.202 in WhiteheadRussell p. 189. A biconditional version of iotaval . (Contributed by Andrew Salmon, 11-Jul-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iotavalb |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iotaval | ||
| 2 | iotasbc | ||
| 3 | iotaexeu | ||
| 4 | eqsbc1 | ||
| 5 | 3 4 | syl | |
| 6 | 2 5 | bitr3d | |
| 7 | equequ2 | ||
| 8 | 7 | bibi2d | |
| 9 | 8 | albidv | |
| 10 | 9 | biimpac | |
| 11 | 10 | exlimiv | |
| 12 | 6 11 | biimtrrdi | |
| 13 | 1 12 | impbid2 |