This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Definition *14.01 in WhiteheadRussell p. 184. In Principia Mathematica, Russell and Whitehead define iota in terms of a function of ( iota x ph ) . Their definition differs in that a function of ( iota x ph ) evaluates to "false" when there isn't a single x that satisfies ph . (Contributed by Andrew Salmon, 11-Jul-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iotasbc | ⊢ ( ∃! 𝑥 𝜑 → ( [ ( ℩ 𝑥 𝜑 ) / 𝑦 ] 𝜓 ↔ ∃ 𝑦 ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ∧ 𝜓 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbc5 | ⊢ ( [ ( ℩ 𝑥 𝜑 ) / 𝑦 ] 𝜓 ↔ ∃ 𝑦 ( 𝑦 = ( ℩ 𝑥 𝜑 ) ∧ 𝜓 ) ) | |
| 2 | iotaexeu | ⊢ ( ∃! 𝑥 𝜑 → ( ℩ 𝑥 𝜑 ) ∈ V ) | |
| 3 | eueq | ⊢ ( ( ℩ 𝑥 𝜑 ) ∈ V ↔ ∃! 𝑦 𝑦 = ( ℩ 𝑥 𝜑 ) ) | |
| 4 | 2 3 | sylib | ⊢ ( ∃! 𝑥 𝜑 → ∃! 𝑦 𝑦 = ( ℩ 𝑥 𝜑 ) ) |
| 5 | eu6 | ⊢ ( ∃! 𝑥 𝜑 ↔ ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) | |
| 6 | iotaval | ⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) → ( ℩ 𝑥 𝜑 ) = 𝑦 ) | |
| 7 | 6 | eqcomd | ⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) → 𝑦 = ( ℩ 𝑥 𝜑 ) ) |
| 8 | 7 | ancri | ⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) → ( 𝑦 = ( ℩ 𝑥 𝜑 ) ∧ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ) |
| 9 | 8 | eximi | ⊢ ( ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) → ∃ 𝑦 ( 𝑦 = ( ℩ 𝑥 𝜑 ) ∧ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ) |
| 10 | 5 9 | sylbi | ⊢ ( ∃! 𝑥 𝜑 → ∃ 𝑦 ( 𝑦 = ( ℩ 𝑥 𝜑 ) ∧ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ) |
| 11 | eupick | ⊢ ( ( ∃! 𝑦 𝑦 = ( ℩ 𝑥 𝜑 ) ∧ ∃ 𝑦 ( 𝑦 = ( ℩ 𝑥 𝜑 ) ∧ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ) → ( 𝑦 = ( ℩ 𝑥 𝜑 ) → ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ) | |
| 12 | 4 10 11 | syl2anc | ⊢ ( ∃! 𝑥 𝜑 → ( 𝑦 = ( ℩ 𝑥 𝜑 ) → ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ) |
| 13 | 12 7 | impbid1 | ⊢ ( ∃! 𝑥 𝜑 → ( 𝑦 = ( ℩ 𝑥 𝜑 ) ↔ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ) |
| 14 | 13 | anbi1d | ⊢ ( ∃! 𝑥 𝜑 → ( ( 𝑦 = ( ℩ 𝑥 𝜑 ) ∧ 𝜓 ) ↔ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ∧ 𝜓 ) ) ) |
| 15 | 14 | exbidv | ⊢ ( ∃! 𝑥 𝜑 → ( ∃ 𝑦 ( 𝑦 = ( ℩ 𝑥 𝜑 ) ∧ 𝜓 ) ↔ ∃ 𝑦 ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ∧ 𝜓 ) ) ) |
| 16 | 1 15 | bitrid | ⊢ ( ∃! 𝑥 𝜑 → ( [ ( ℩ 𝑥 𝜑 ) / 𝑦 ] 𝜓 ↔ ∃ 𝑦 ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ∧ 𝜓 ) ) ) |