This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Theorem *14.202 in WhiteheadRussell p. 189. A biconditional version of iotaval . (Contributed by Andrew Salmon, 11-Jul-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iotavalb | |- ( E! x ph -> ( A. x ( ph <-> x = y ) <-> ( iota x ph ) = y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iotaval | |- ( A. x ( ph <-> x = y ) -> ( iota x ph ) = y ) |
|
| 2 | iotasbc | |- ( E! x ph -> ( [. ( iota x ph ) / z ]. z = y <-> E. z ( A. x ( ph <-> x = z ) /\ z = y ) ) ) |
|
| 3 | iotaexeu | |- ( E! x ph -> ( iota x ph ) e. _V ) |
|
| 4 | eqsbc1 | |- ( ( iota x ph ) e. _V -> ( [. ( iota x ph ) / z ]. z = y <-> ( iota x ph ) = y ) ) |
|
| 5 | 3 4 | syl | |- ( E! x ph -> ( [. ( iota x ph ) / z ]. z = y <-> ( iota x ph ) = y ) ) |
| 6 | 2 5 | bitr3d | |- ( E! x ph -> ( E. z ( A. x ( ph <-> x = z ) /\ z = y ) <-> ( iota x ph ) = y ) ) |
| 7 | equequ2 | |- ( z = y -> ( x = z <-> x = y ) ) |
|
| 8 | 7 | bibi2d | |- ( z = y -> ( ( ph <-> x = z ) <-> ( ph <-> x = y ) ) ) |
| 9 | 8 | albidv | |- ( z = y -> ( A. x ( ph <-> x = z ) <-> A. x ( ph <-> x = y ) ) ) |
| 10 | 9 | biimpac | |- ( ( A. x ( ph <-> x = z ) /\ z = y ) -> A. x ( ph <-> x = y ) ) |
| 11 | 10 | exlimiv | |- ( E. z ( A. x ( ph <-> x = z ) /\ z = y ) -> A. x ( ph <-> x = y ) ) |
| 12 | 6 11 | biimtrrdi | |- ( E! x ph -> ( ( iota x ph ) = y -> A. x ( ph <-> x = y ) ) ) |
| 13 | 1 12 | impbid2 | |- ( E! x ph -> ( A. x ( ph <-> x = y ) <-> ( iota x ph ) = y ) ) |