This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Biconditional form of ioossioo . (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ioossioobi.a | |- ( ph -> A e. RR* ) |
|
| ioossioobi.b | |- ( ph -> B e. RR* ) |
||
| ioossioobi.c | |- ( ph -> C e. RR* ) |
||
| ioossioobi.d | |- ( ph -> D e. RR* ) |
||
| ioossioobi.cltd | |- ( ph -> C < D ) |
||
| Assertion | ioossioobi | |- ( ph -> ( ( C (,) D ) C_ ( A (,) B ) <-> ( A <_ C /\ D <_ B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ioossioobi.a | |- ( ph -> A e. RR* ) |
|
| 2 | ioossioobi.b | |- ( ph -> B e. RR* ) |
|
| 3 | ioossioobi.c | |- ( ph -> C e. RR* ) |
|
| 4 | ioossioobi.d | |- ( ph -> D e. RR* ) |
|
| 5 | ioossioobi.cltd | |- ( ph -> C < D ) |
|
| 6 | simpr | |- ( ( ph /\ ( C (,) D ) C_ ( A (,) B ) ) -> ( C (,) D ) C_ ( A (,) B ) ) |
|
| 7 | df-ioo | |- (,) = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x < z /\ z < y ) } ) |
|
| 8 | 7 | ixxssxr | |- ( A (,) B ) C_ RR* |
| 9 | infxrss | |- ( ( ( C (,) D ) C_ ( A (,) B ) /\ ( A (,) B ) C_ RR* ) -> inf ( ( A (,) B ) , RR* , < ) <_ inf ( ( C (,) D ) , RR* , < ) ) |
|
| 10 | 6 8 9 | sylancl | |- ( ( ph /\ ( C (,) D ) C_ ( A (,) B ) ) -> inf ( ( A (,) B ) , RR* , < ) <_ inf ( ( C (,) D ) , RR* , < ) ) |
| 11 | 1 | adantr | |- ( ( ph /\ ( C (,) D ) C_ ( A (,) B ) ) -> A e. RR* ) |
| 12 | 2 | adantr | |- ( ( ph /\ ( C (,) D ) C_ ( A (,) B ) ) -> B e. RR* ) |
| 13 | ioon0 | |- ( ( C e. RR* /\ D e. RR* ) -> ( ( C (,) D ) =/= (/) <-> C < D ) ) |
|
| 14 | 3 4 13 | syl2anc | |- ( ph -> ( ( C (,) D ) =/= (/) <-> C < D ) ) |
| 15 | 5 14 | mpbird | |- ( ph -> ( C (,) D ) =/= (/) ) |
| 16 | 15 | adantr | |- ( ( ph /\ ( C (,) D ) C_ ( A (,) B ) ) -> ( C (,) D ) =/= (/) ) |
| 17 | ssn0 | |- ( ( ( C (,) D ) C_ ( A (,) B ) /\ ( C (,) D ) =/= (/) ) -> ( A (,) B ) =/= (/) ) |
|
| 18 | 6 16 17 | syl2anc | |- ( ( ph /\ ( C (,) D ) C_ ( A (,) B ) ) -> ( A (,) B ) =/= (/) ) |
| 19 | idd | |- ( ( w e. RR* /\ B e. RR* ) -> ( w < B -> w < B ) ) |
|
| 20 | xrltle | |- ( ( w e. RR* /\ B e. RR* ) -> ( w < B -> w <_ B ) ) |
|
| 21 | idd | |- ( ( A e. RR* /\ w e. RR* ) -> ( A < w -> A < w ) ) |
|
| 22 | xrltle | |- ( ( A e. RR* /\ w e. RR* ) -> ( A < w -> A <_ w ) ) |
|
| 23 | 7 19 20 21 22 | ixxlb | |- ( ( A e. RR* /\ B e. RR* /\ ( A (,) B ) =/= (/) ) -> inf ( ( A (,) B ) , RR* , < ) = A ) |
| 24 | 11 12 18 23 | syl3anc | |- ( ( ph /\ ( C (,) D ) C_ ( A (,) B ) ) -> inf ( ( A (,) B ) , RR* , < ) = A ) |
| 25 | 3 | adantr | |- ( ( ph /\ ( C (,) D ) C_ ( A (,) B ) ) -> C e. RR* ) |
| 26 | 4 | adantr | |- ( ( ph /\ ( C (,) D ) C_ ( A (,) B ) ) -> D e. RR* ) |
| 27 | idd | |- ( ( w e. RR* /\ D e. RR* ) -> ( w < D -> w < D ) ) |
|
| 28 | xrltle | |- ( ( w e. RR* /\ D e. RR* ) -> ( w < D -> w <_ D ) ) |
|
| 29 | idd | |- ( ( C e. RR* /\ w e. RR* ) -> ( C < w -> C < w ) ) |
|
| 30 | xrltle | |- ( ( C e. RR* /\ w e. RR* ) -> ( C < w -> C <_ w ) ) |
|
| 31 | 7 27 28 29 30 | ixxlb | |- ( ( C e. RR* /\ D e. RR* /\ ( C (,) D ) =/= (/) ) -> inf ( ( C (,) D ) , RR* , < ) = C ) |
| 32 | 25 26 16 31 | syl3anc | |- ( ( ph /\ ( C (,) D ) C_ ( A (,) B ) ) -> inf ( ( C (,) D ) , RR* , < ) = C ) |
| 33 | 10 24 32 | 3brtr3d | |- ( ( ph /\ ( C (,) D ) C_ ( A (,) B ) ) -> A <_ C ) |
| 34 | supxrss | |- ( ( ( C (,) D ) C_ ( A (,) B ) /\ ( A (,) B ) C_ RR* ) -> sup ( ( C (,) D ) , RR* , < ) <_ sup ( ( A (,) B ) , RR* , < ) ) |
|
| 35 | 6 8 34 | sylancl | |- ( ( ph /\ ( C (,) D ) C_ ( A (,) B ) ) -> sup ( ( C (,) D ) , RR* , < ) <_ sup ( ( A (,) B ) , RR* , < ) ) |
| 36 | 7 27 28 29 30 | ixxub | |- ( ( C e. RR* /\ D e. RR* /\ ( C (,) D ) =/= (/) ) -> sup ( ( C (,) D ) , RR* , < ) = D ) |
| 37 | 25 26 16 36 | syl3anc | |- ( ( ph /\ ( C (,) D ) C_ ( A (,) B ) ) -> sup ( ( C (,) D ) , RR* , < ) = D ) |
| 38 | 7 19 20 21 22 | ixxub | |- ( ( A e. RR* /\ B e. RR* /\ ( A (,) B ) =/= (/) ) -> sup ( ( A (,) B ) , RR* , < ) = B ) |
| 39 | 11 12 18 38 | syl3anc | |- ( ( ph /\ ( C (,) D ) C_ ( A (,) B ) ) -> sup ( ( A (,) B ) , RR* , < ) = B ) |
| 40 | 35 37 39 | 3brtr3d | |- ( ( ph /\ ( C (,) D ) C_ ( A (,) B ) ) -> D <_ B ) |
| 41 | 33 40 | jca | |- ( ( ph /\ ( C (,) D ) C_ ( A (,) B ) ) -> ( A <_ C /\ D <_ B ) ) |
| 42 | 1 | adantr | |- ( ( ph /\ ( A <_ C /\ D <_ B ) ) -> A e. RR* ) |
| 43 | 2 | adantr | |- ( ( ph /\ ( A <_ C /\ D <_ B ) ) -> B e. RR* ) |
| 44 | simprl | |- ( ( ph /\ ( A <_ C /\ D <_ B ) ) -> A <_ C ) |
|
| 45 | simprr | |- ( ( ph /\ ( A <_ C /\ D <_ B ) ) -> D <_ B ) |
|
| 46 | ioossioo | |- ( ( ( A e. RR* /\ B e. RR* ) /\ ( A <_ C /\ D <_ B ) ) -> ( C (,) D ) C_ ( A (,) B ) ) |
|
| 47 | 42 43 44 45 46 | syl22anc | |- ( ( ph /\ ( A <_ C /\ D <_ B ) ) -> ( C (,) D ) C_ ( A (,) B ) ) |
| 48 | 41 47 | impbida | |- ( ph -> ( ( C (,) D ) C_ ( A (,) B ) <-> ( A <_ C /\ D <_ B ) ) ) |