This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Larger sets of extended reals have smaller infima. (Contributed by Glauco Siliprandi, 11-Dec-2019) (Revised by AV, 13-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | infxrss | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ* ) → inf ( 𝐵 , ℝ* , < ) ≤ inf ( 𝐴 , ℝ* , < ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplr | ⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ* ) ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ⊆ ℝ* ) | |
| 2 | simpl | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ* ) → 𝐴 ⊆ 𝐵 ) | |
| 3 | 2 | sselda | ⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ* ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐵 ) |
| 4 | infxrlb | ⊢ ( ( 𝐵 ⊆ ℝ* ∧ 𝑥 ∈ 𝐵 ) → inf ( 𝐵 , ℝ* , < ) ≤ 𝑥 ) | |
| 5 | 1 3 4 | syl2anc | ⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ* ) ∧ 𝑥 ∈ 𝐴 ) → inf ( 𝐵 , ℝ* , < ) ≤ 𝑥 ) |
| 6 | 5 | ralrimiva | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ* ) → ∀ 𝑥 ∈ 𝐴 inf ( 𝐵 , ℝ* , < ) ≤ 𝑥 ) |
| 7 | sstr | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ* ) → 𝐴 ⊆ ℝ* ) | |
| 8 | infxrcl | ⊢ ( 𝐵 ⊆ ℝ* → inf ( 𝐵 , ℝ* , < ) ∈ ℝ* ) | |
| 9 | 8 | adantl | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ* ) → inf ( 𝐵 , ℝ* , < ) ∈ ℝ* ) |
| 10 | infxrgelb | ⊢ ( ( 𝐴 ⊆ ℝ* ∧ inf ( 𝐵 , ℝ* , < ) ∈ ℝ* ) → ( inf ( 𝐵 , ℝ* , < ) ≤ inf ( 𝐴 , ℝ* , < ) ↔ ∀ 𝑥 ∈ 𝐴 inf ( 𝐵 , ℝ* , < ) ≤ 𝑥 ) ) | |
| 11 | 7 9 10 | syl2anc | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ* ) → ( inf ( 𝐵 , ℝ* , < ) ≤ inf ( 𝐴 , ℝ* , < ) ↔ ∀ 𝑥 ∈ 𝐴 inf ( 𝐵 , ℝ* , < ) ≤ 𝑥 ) ) |
| 12 | 6 11 | mpbird | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ* ) → inf ( 𝐵 , ℝ* , < ) ≤ inf ( 𝐴 , ℝ* , < ) ) |