This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A closed interval shifted by a real number. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iccshift.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| iccshift.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| iccshift.3 | ⊢ ( 𝜑 → 𝑇 ∈ ℝ ) | ||
| Assertion | iccshift | ⊢ ( 𝜑 → ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) = { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) 𝑤 = ( 𝑧 + 𝑇 ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iccshift.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 2 | iccshift.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 3 | iccshift.3 | ⊢ ( 𝜑 → 𝑇 ∈ ℝ ) | |
| 4 | eqeq1 | ⊢ ( 𝑤 = 𝑥 → ( 𝑤 = ( 𝑧 + 𝑇 ) ↔ 𝑥 = ( 𝑧 + 𝑇 ) ) ) | |
| 5 | 4 | rexbidv | ⊢ ( 𝑤 = 𝑥 → ( ∃ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) 𝑤 = ( 𝑧 + 𝑇 ) ↔ ∃ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) 𝑥 = ( 𝑧 + 𝑇 ) ) ) |
| 6 | 5 | elrab | ⊢ ( 𝑥 ∈ { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) 𝑤 = ( 𝑧 + 𝑇 ) } ↔ ( 𝑥 ∈ ℂ ∧ ∃ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) 𝑥 = ( 𝑧 + 𝑇 ) ) ) |
| 7 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℂ ∧ ∃ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) 𝑥 = ( 𝑧 + 𝑇 ) ) ) → ∃ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) 𝑥 = ( 𝑧 + 𝑇 ) ) | |
| 8 | nfv | ⊢ Ⅎ 𝑧 𝜑 | |
| 9 | nfv | ⊢ Ⅎ 𝑧 𝑥 ∈ ℂ | |
| 10 | nfre1 | ⊢ Ⅎ 𝑧 ∃ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) 𝑥 = ( 𝑧 + 𝑇 ) | |
| 11 | 9 10 | nfan | ⊢ Ⅎ 𝑧 ( 𝑥 ∈ ℂ ∧ ∃ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) 𝑥 = ( 𝑧 + 𝑇 ) ) |
| 12 | 8 11 | nfan | ⊢ Ⅎ 𝑧 ( 𝜑 ∧ ( 𝑥 ∈ ℂ ∧ ∃ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) 𝑥 = ( 𝑧 + 𝑇 ) ) ) |
| 13 | nfv | ⊢ Ⅎ 𝑧 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) | |
| 14 | simp3 | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑥 = ( 𝑧 + 𝑇 ) ) → 𝑥 = ( 𝑧 + 𝑇 ) ) | |
| 15 | 1 2 | iccssred | ⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 16 | 15 | sselda | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑧 ∈ ℝ ) |
| 17 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑇 ∈ ℝ ) |
| 18 | 16 17 | readdcld | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑧 + 𝑇 ) ∈ ℝ ) |
| 19 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐴 ∈ ℝ ) |
| 20 | simpr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) | |
| 21 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐵 ∈ ℝ ) |
| 22 | elicc2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑧 ∈ ℝ ∧ 𝐴 ≤ 𝑧 ∧ 𝑧 ≤ 𝐵 ) ) ) | |
| 23 | 19 21 22 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑧 ∈ ℝ ∧ 𝐴 ≤ 𝑧 ∧ 𝑧 ≤ 𝐵 ) ) ) |
| 24 | 20 23 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑧 ∈ ℝ ∧ 𝐴 ≤ 𝑧 ∧ 𝑧 ≤ 𝐵 ) ) |
| 25 | 24 | simp2d | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐴 ≤ 𝑧 ) |
| 26 | 19 16 17 25 | leadd1dd | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐴 + 𝑇 ) ≤ ( 𝑧 + 𝑇 ) ) |
| 27 | 24 | simp3d | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑧 ≤ 𝐵 ) |
| 28 | 16 21 17 27 | leadd1dd | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑧 + 𝑇 ) ≤ ( 𝐵 + 𝑇 ) ) |
| 29 | 18 26 28 | 3jca | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( 𝑧 + 𝑇 ) ∈ ℝ ∧ ( 𝐴 + 𝑇 ) ≤ ( 𝑧 + 𝑇 ) ∧ ( 𝑧 + 𝑇 ) ≤ ( 𝐵 + 𝑇 ) ) ) |
| 30 | 29 | 3adant3 | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑥 = ( 𝑧 + 𝑇 ) ) → ( ( 𝑧 + 𝑇 ) ∈ ℝ ∧ ( 𝐴 + 𝑇 ) ≤ ( 𝑧 + 𝑇 ) ∧ ( 𝑧 + 𝑇 ) ≤ ( 𝐵 + 𝑇 ) ) ) |
| 31 | 1 3 | readdcld | ⊢ ( 𝜑 → ( 𝐴 + 𝑇 ) ∈ ℝ ) |
| 32 | 31 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑥 = ( 𝑧 + 𝑇 ) ) → ( 𝐴 + 𝑇 ) ∈ ℝ ) |
| 33 | 2 3 | readdcld | ⊢ ( 𝜑 → ( 𝐵 + 𝑇 ) ∈ ℝ ) |
| 34 | 33 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑥 = ( 𝑧 + 𝑇 ) ) → ( 𝐵 + 𝑇 ) ∈ ℝ ) |
| 35 | elicc2 | ⊢ ( ( ( 𝐴 + 𝑇 ) ∈ ℝ ∧ ( 𝐵 + 𝑇 ) ∈ ℝ ) → ( ( 𝑧 + 𝑇 ) ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ↔ ( ( 𝑧 + 𝑇 ) ∈ ℝ ∧ ( 𝐴 + 𝑇 ) ≤ ( 𝑧 + 𝑇 ) ∧ ( 𝑧 + 𝑇 ) ≤ ( 𝐵 + 𝑇 ) ) ) ) | |
| 36 | 32 34 35 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑥 = ( 𝑧 + 𝑇 ) ) → ( ( 𝑧 + 𝑇 ) ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ↔ ( ( 𝑧 + 𝑇 ) ∈ ℝ ∧ ( 𝐴 + 𝑇 ) ≤ ( 𝑧 + 𝑇 ) ∧ ( 𝑧 + 𝑇 ) ≤ ( 𝐵 + 𝑇 ) ) ) ) |
| 37 | 30 36 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑥 = ( 𝑧 + 𝑇 ) ) → ( 𝑧 + 𝑇 ) ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) |
| 38 | 14 37 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑥 = ( 𝑧 + 𝑇 ) ) → 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) |
| 39 | 38 | 3exp | ⊢ ( 𝜑 → ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) → ( 𝑥 = ( 𝑧 + 𝑇 ) → 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) ) ) |
| 40 | 39 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℂ ∧ ∃ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) 𝑥 = ( 𝑧 + 𝑇 ) ) ) → ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) → ( 𝑥 = ( 𝑧 + 𝑇 ) → 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) ) ) |
| 41 | 12 13 40 | rexlimd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℂ ∧ ∃ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) 𝑥 = ( 𝑧 + 𝑇 ) ) ) → ( ∃ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) 𝑥 = ( 𝑧 + 𝑇 ) → 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) ) |
| 42 | 7 41 | mpd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℂ ∧ ∃ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) 𝑥 = ( 𝑧 + 𝑇 ) ) ) → 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) |
| 43 | 6 42 | sylan2b | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) 𝑤 = ( 𝑧 + 𝑇 ) } ) → 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) |
| 44 | 31 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → ( 𝐴 + 𝑇 ) ∈ ℝ ) |
| 45 | 33 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → ( 𝐵 + 𝑇 ) ∈ ℝ ) |
| 46 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) | |
| 47 | eliccre | ⊢ ( ( ( 𝐴 + 𝑇 ) ∈ ℝ ∧ ( 𝐵 + 𝑇 ) ∈ ℝ ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → 𝑥 ∈ ℝ ) | |
| 48 | 44 45 46 47 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → 𝑥 ∈ ℝ ) |
| 49 | 48 | recnd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → 𝑥 ∈ ℂ ) |
| 50 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → 𝐴 ∈ ℝ ) |
| 51 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → 𝐵 ∈ ℝ ) |
| 52 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → 𝑇 ∈ ℝ ) |
| 53 | 48 52 | resubcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → ( 𝑥 − 𝑇 ) ∈ ℝ ) |
| 54 | 1 | recnd | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 55 | 3 | recnd | ⊢ ( 𝜑 → 𝑇 ∈ ℂ ) |
| 56 | 54 55 | pncand | ⊢ ( 𝜑 → ( ( 𝐴 + 𝑇 ) − 𝑇 ) = 𝐴 ) |
| 57 | 56 | eqcomd | ⊢ ( 𝜑 → 𝐴 = ( ( 𝐴 + 𝑇 ) − 𝑇 ) ) |
| 58 | 57 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → 𝐴 = ( ( 𝐴 + 𝑇 ) − 𝑇 ) ) |
| 59 | elicc2 | ⊢ ( ( ( 𝐴 + 𝑇 ) ∈ ℝ ∧ ( 𝐵 + 𝑇 ) ∈ ℝ ) → ( 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ↔ ( 𝑥 ∈ ℝ ∧ ( 𝐴 + 𝑇 ) ≤ 𝑥 ∧ 𝑥 ≤ ( 𝐵 + 𝑇 ) ) ) ) | |
| 60 | 44 45 59 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → ( 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ↔ ( 𝑥 ∈ ℝ ∧ ( 𝐴 + 𝑇 ) ≤ 𝑥 ∧ 𝑥 ≤ ( 𝐵 + 𝑇 ) ) ) ) |
| 61 | 46 60 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → ( 𝑥 ∈ ℝ ∧ ( 𝐴 + 𝑇 ) ≤ 𝑥 ∧ 𝑥 ≤ ( 𝐵 + 𝑇 ) ) ) |
| 62 | 61 | simp2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → ( 𝐴 + 𝑇 ) ≤ 𝑥 ) |
| 63 | 44 48 52 62 | lesub1dd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → ( ( 𝐴 + 𝑇 ) − 𝑇 ) ≤ ( 𝑥 − 𝑇 ) ) |
| 64 | 58 63 | eqbrtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → 𝐴 ≤ ( 𝑥 − 𝑇 ) ) |
| 65 | 61 | simp3d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → 𝑥 ≤ ( 𝐵 + 𝑇 ) ) |
| 66 | 48 45 52 65 | lesub1dd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → ( 𝑥 − 𝑇 ) ≤ ( ( 𝐵 + 𝑇 ) − 𝑇 ) ) |
| 67 | 2 | recnd | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 68 | 67 55 | pncand | ⊢ ( 𝜑 → ( ( 𝐵 + 𝑇 ) − 𝑇 ) = 𝐵 ) |
| 69 | 68 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → ( ( 𝐵 + 𝑇 ) − 𝑇 ) = 𝐵 ) |
| 70 | 66 69 | breqtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → ( 𝑥 − 𝑇 ) ≤ 𝐵 ) |
| 71 | 50 51 53 64 70 | eliccd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → ( 𝑥 − 𝑇 ) ∈ ( 𝐴 [,] 𝐵 ) ) |
| 72 | 55 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → 𝑇 ∈ ℂ ) |
| 73 | 49 72 | npcand | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → ( ( 𝑥 − 𝑇 ) + 𝑇 ) = 𝑥 ) |
| 74 | 73 | eqcomd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → 𝑥 = ( ( 𝑥 − 𝑇 ) + 𝑇 ) ) |
| 75 | oveq1 | ⊢ ( 𝑧 = ( 𝑥 − 𝑇 ) → ( 𝑧 + 𝑇 ) = ( ( 𝑥 − 𝑇 ) + 𝑇 ) ) | |
| 76 | 75 | rspceeqv | ⊢ ( ( ( 𝑥 − 𝑇 ) ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑥 = ( ( 𝑥 − 𝑇 ) + 𝑇 ) ) → ∃ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) 𝑥 = ( 𝑧 + 𝑇 ) ) |
| 77 | 71 74 76 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → ∃ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) 𝑥 = ( 𝑧 + 𝑇 ) ) |
| 78 | 49 77 6 | sylanbrc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → 𝑥 ∈ { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) 𝑤 = ( 𝑧 + 𝑇 ) } ) |
| 79 | 43 78 | impbida | ⊢ ( 𝜑 → ( 𝑥 ∈ { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) 𝑤 = ( 𝑧 + 𝑇 ) } ↔ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) ) |
| 80 | 79 | eqrdv | ⊢ ( 𝜑 → { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) 𝑤 = ( 𝑧 + 𝑇 ) } = ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) |
| 81 | 80 | eqcomd | ⊢ ( 𝜑 → ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) = { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) 𝑤 = ( 𝑧 + 𝑇 ) } ) |