This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Smaller sets of extended reals have smaller suprema. (Contributed by Mario Carneiro, 1-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | supxrss | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ* ) → sup ( 𝐴 , ℝ* , < ) ≤ sup ( 𝐵 , ℝ* , < ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplr | ⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ* ) ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ⊆ ℝ* ) | |
| 2 | simpl | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ* ) → 𝐴 ⊆ 𝐵 ) | |
| 3 | 2 | sselda | ⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ* ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐵 ) |
| 4 | supxrub | ⊢ ( ( 𝐵 ⊆ ℝ* ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ≤ sup ( 𝐵 , ℝ* , < ) ) | |
| 5 | 1 3 4 | syl2anc | ⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ* ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ≤ sup ( 𝐵 , ℝ* , < ) ) |
| 6 | 5 | ralrimiva | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ* ) → ∀ 𝑥 ∈ 𝐴 𝑥 ≤ sup ( 𝐵 , ℝ* , < ) ) |
| 7 | sstr | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ* ) → 𝐴 ⊆ ℝ* ) | |
| 8 | supxrcl | ⊢ ( 𝐵 ⊆ ℝ* → sup ( 𝐵 , ℝ* , < ) ∈ ℝ* ) | |
| 9 | 8 | adantl | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ* ) → sup ( 𝐵 , ℝ* , < ) ∈ ℝ* ) |
| 10 | supxrleub | ⊢ ( ( 𝐴 ⊆ ℝ* ∧ sup ( 𝐵 , ℝ* , < ) ∈ ℝ* ) → ( sup ( 𝐴 , ℝ* , < ) ≤ sup ( 𝐵 , ℝ* , < ) ↔ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ sup ( 𝐵 , ℝ* , < ) ) ) | |
| 11 | 7 9 10 | syl2anc | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ* ) → ( sup ( 𝐴 , ℝ* , < ) ≤ sup ( 𝐵 , ℝ* , < ) ↔ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ sup ( 𝐵 , ℝ* , < ) ) ) |
| 12 | 6 11 | mpbird | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ* ) → sup ( 𝐴 , ℝ* , < ) ≤ sup ( 𝐵 , ℝ* , < ) ) |