This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The function F does not always return real numbers, but it does on intervals of finite volume. (Contributed by Mario Carneiro, 26-Mar-2015) (Revised by AV, 13-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ioorf.1 | |- F = ( x e. ran (,) |-> if ( x = (/) , <. 0 , 0 >. , <. inf ( x , RR* , < ) , sup ( x , RR* , < ) >. ) ) |
|
| Assertion | ioorcl | |- ( ( A e. ran (,) /\ ( vol* ` A ) e. RR ) -> ( F ` A ) e. ( <_ i^i ( RR X. RR ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ioorf.1 | |- F = ( x e. ran (,) |-> if ( x = (/) , <. 0 , 0 >. , <. inf ( x , RR* , < ) , sup ( x , RR* , < ) >. ) ) |
|
| 2 | 1 | ioorf | |- F : ran (,) --> ( <_ i^i ( RR* X. RR* ) ) |
| 3 | 2 | ffvelcdmi | |- ( A e. ran (,) -> ( F ` A ) e. ( <_ i^i ( RR* X. RR* ) ) ) |
| 4 | 3 | adantr | |- ( ( A e. ran (,) /\ ( vol* ` A ) e. RR ) -> ( F ` A ) e. ( <_ i^i ( RR* X. RR* ) ) ) |
| 5 | 4 | elin1d | |- ( ( A e. ran (,) /\ ( vol* ` A ) e. RR ) -> ( F ` A ) e. <_ ) |
| 6 | 1 | ioorval | |- ( A e. ran (,) -> ( F ` A ) = if ( A = (/) , <. 0 , 0 >. , <. inf ( A , RR* , < ) , sup ( A , RR* , < ) >. ) ) |
| 7 | 6 | adantr | |- ( ( A e. ran (,) /\ ( vol* ` A ) e. RR ) -> ( F ` A ) = if ( A = (/) , <. 0 , 0 >. , <. inf ( A , RR* , < ) , sup ( A , RR* , < ) >. ) ) |
| 8 | iftrue | |- ( A = (/) -> if ( A = (/) , <. 0 , 0 >. , <. inf ( A , RR* , < ) , sup ( A , RR* , < ) >. ) = <. 0 , 0 >. ) |
|
| 9 | 7 8 | sylan9eq | |- ( ( ( A e. ran (,) /\ ( vol* ` A ) e. RR ) /\ A = (/) ) -> ( F ` A ) = <. 0 , 0 >. ) |
| 10 | 0re | |- 0 e. RR |
|
| 11 | opelxpi | |- ( ( 0 e. RR /\ 0 e. RR ) -> <. 0 , 0 >. e. ( RR X. RR ) ) |
|
| 12 | 10 10 11 | mp2an | |- <. 0 , 0 >. e. ( RR X. RR ) |
| 13 | 9 12 | eqeltrdi | |- ( ( ( A e. ran (,) /\ ( vol* ` A ) e. RR ) /\ A = (/) ) -> ( F ` A ) e. ( RR X. RR ) ) |
| 14 | ioof | |- (,) : ( RR* X. RR* ) --> ~P RR |
|
| 15 | ffn | |- ( (,) : ( RR* X. RR* ) --> ~P RR -> (,) Fn ( RR* X. RR* ) ) |
|
| 16 | ovelrn | |- ( (,) Fn ( RR* X. RR* ) -> ( A e. ran (,) <-> E. a e. RR* E. b e. RR* A = ( a (,) b ) ) ) |
|
| 17 | 14 15 16 | mp2b | |- ( A e. ran (,) <-> E. a e. RR* E. b e. RR* A = ( a (,) b ) ) |
| 18 | 1 | ioorinv2 | |- ( ( a (,) b ) =/= (/) -> ( F ` ( a (,) b ) ) = <. a , b >. ) |
| 19 | 18 | adantl | |- ( ( ( vol* ` ( a (,) b ) ) e. RR /\ ( a (,) b ) =/= (/) ) -> ( F ` ( a (,) b ) ) = <. a , b >. ) |
| 20 | ioorcl2 | |- ( ( ( a (,) b ) =/= (/) /\ ( vol* ` ( a (,) b ) ) e. RR ) -> ( a e. RR /\ b e. RR ) ) |
|
| 21 | 20 | ancoms | |- ( ( ( vol* ` ( a (,) b ) ) e. RR /\ ( a (,) b ) =/= (/) ) -> ( a e. RR /\ b e. RR ) ) |
| 22 | opelxpi | |- ( ( a e. RR /\ b e. RR ) -> <. a , b >. e. ( RR X. RR ) ) |
|
| 23 | 21 22 | syl | |- ( ( ( vol* ` ( a (,) b ) ) e. RR /\ ( a (,) b ) =/= (/) ) -> <. a , b >. e. ( RR X. RR ) ) |
| 24 | 19 23 | eqeltrd | |- ( ( ( vol* ` ( a (,) b ) ) e. RR /\ ( a (,) b ) =/= (/) ) -> ( F ` ( a (,) b ) ) e. ( RR X. RR ) ) |
| 25 | fveq2 | |- ( A = ( a (,) b ) -> ( vol* ` A ) = ( vol* ` ( a (,) b ) ) ) |
|
| 26 | 25 | eleq1d | |- ( A = ( a (,) b ) -> ( ( vol* ` A ) e. RR <-> ( vol* ` ( a (,) b ) ) e. RR ) ) |
| 27 | neeq1 | |- ( A = ( a (,) b ) -> ( A =/= (/) <-> ( a (,) b ) =/= (/) ) ) |
|
| 28 | 26 27 | anbi12d | |- ( A = ( a (,) b ) -> ( ( ( vol* ` A ) e. RR /\ A =/= (/) ) <-> ( ( vol* ` ( a (,) b ) ) e. RR /\ ( a (,) b ) =/= (/) ) ) ) |
| 29 | fveq2 | |- ( A = ( a (,) b ) -> ( F ` A ) = ( F ` ( a (,) b ) ) ) |
|
| 30 | 29 | eleq1d | |- ( A = ( a (,) b ) -> ( ( F ` A ) e. ( RR X. RR ) <-> ( F ` ( a (,) b ) ) e. ( RR X. RR ) ) ) |
| 31 | 28 30 | imbi12d | |- ( A = ( a (,) b ) -> ( ( ( ( vol* ` A ) e. RR /\ A =/= (/) ) -> ( F ` A ) e. ( RR X. RR ) ) <-> ( ( ( vol* ` ( a (,) b ) ) e. RR /\ ( a (,) b ) =/= (/) ) -> ( F ` ( a (,) b ) ) e. ( RR X. RR ) ) ) ) |
| 32 | 24 31 | mpbiri | |- ( A = ( a (,) b ) -> ( ( ( vol* ` A ) e. RR /\ A =/= (/) ) -> ( F ` A ) e. ( RR X. RR ) ) ) |
| 33 | 32 | a1i | |- ( ( a e. RR* /\ b e. RR* ) -> ( A = ( a (,) b ) -> ( ( ( vol* ` A ) e. RR /\ A =/= (/) ) -> ( F ` A ) e. ( RR X. RR ) ) ) ) |
| 34 | 33 | rexlimivv | |- ( E. a e. RR* E. b e. RR* A = ( a (,) b ) -> ( ( ( vol* ` A ) e. RR /\ A =/= (/) ) -> ( F ` A ) e. ( RR X. RR ) ) ) |
| 35 | 17 34 | sylbi | |- ( A e. ran (,) -> ( ( ( vol* ` A ) e. RR /\ A =/= (/) ) -> ( F ` A ) e. ( RR X. RR ) ) ) |
| 36 | 35 | impl | |- ( ( ( A e. ran (,) /\ ( vol* ` A ) e. RR ) /\ A =/= (/) ) -> ( F ` A ) e. ( RR X. RR ) ) |
| 37 | 13 36 | pm2.61dane | |- ( ( A e. ran (,) /\ ( vol* ` A ) e. RR ) -> ( F ` A ) e. ( RR X. RR ) ) |
| 38 | 5 37 | elind | |- ( ( A e. ran (,) /\ ( vol* ` A ) e. RR ) -> ( F ` A ) e. ( <_ i^i ( RR X. RR ) ) ) |