This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define a function from open intervals to their endpoints. (Contributed by Mario Carneiro, 26-Mar-2015) (Revised by AV, 13-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ioorf.1 | ⊢ 𝐹 = ( 𝑥 ∈ ran (,) ↦ if ( 𝑥 = ∅ , 〈 0 , 0 〉 , 〈 inf ( 𝑥 , ℝ* , < ) , sup ( 𝑥 , ℝ* , < ) 〉 ) ) | |
| Assertion | ioorval | ⊢ ( 𝐴 ∈ ran (,) → ( 𝐹 ‘ 𝐴 ) = if ( 𝐴 = ∅ , 〈 0 , 0 〉 , 〈 inf ( 𝐴 , ℝ* , < ) , sup ( 𝐴 , ℝ* , < ) 〉 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ioorf.1 | ⊢ 𝐹 = ( 𝑥 ∈ ran (,) ↦ if ( 𝑥 = ∅ , 〈 0 , 0 〉 , 〈 inf ( 𝑥 , ℝ* , < ) , sup ( 𝑥 , ℝ* , < ) 〉 ) ) | |
| 2 | eqeq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 = ∅ ↔ 𝐴 = ∅ ) ) | |
| 3 | infeq1 | ⊢ ( 𝑥 = 𝐴 → inf ( 𝑥 , ℝ* , < ) = inf ( 𝐴 , ℝ* , < ) ) | |
| 4 | supeq1 | ⊢ ( 𝑥 = 𝐴 → sup ( 𝑥 , ℝ* , < ) = sup ( 𝐴 , ℝ* , < ) ) | |
| 5 | 3 4 | opeq12d | ⊢ ( 𝑥 = 𝐴 → 〈 inf ( 𝑥 , ℝ* , < ) , sup ( 𝑥 , ℝ* , < ) 〉 = 〈 inf ( 𝐴 , ℝ* , < ) , sup ( 𝐴 , ℝ* , < ) 〉 ) |
| 6 | 2 5 | ifbieq2d | ⊢ ( 𝑥 = 𝐴 → if ( 𝑥 = ∅ , 〈 0 , 0 〉 , 〈 inf ( 𝑥 , ℝ* , < ) , sup ( 𝑥 , ℝ* , < ) 〉 ) = if ( 𝐴 = ∅ , 〈 0 , 0 〉 , 〈 inf ( 𝐴 , ℝ* , < ) , sup ( 𝐴 , ℝ* , < ) 〉 ) ) |
| 7 | opex | ⊢ 〈 0 , 0 〉 ∈ V | |
| 8 | opex | ⊢ 〈 inf ( 𝐴 , ℝ* , < ) , sup ( 𝐴 , ℝ* , < ) 〉 ∈ V | |
| 9 | 7 8 | ifex | ⊢ if ( 𝐴 = ∅ , 〈 0 , 0 〉 , 〈 inf ( 𝐴 , ℝ* , < ) , sup ( 𝐴 , ℝ* , < ) 〉 ) ∈ V |
| 10 | 6 1 9 | fvmpt | ⊢ ( 𝐴 ∈ ran (,) → ( 𝐹 ‘ 𝐴 ) = if ( 𝐴 = ∅ , 〈 0 , 0 〉 , 〈 inf ( 𝐴 , ℝ* , < ) , sup ( 𝐴 , ℝ* , < ) 〉 ) ) |