This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The opposite of a group is a group. (Contributed by Stefan O'Rear, 26-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | oppgbas.1 | ⊢ 𝑂 = ( oppg ‘ 𝑅 ) | |
| Assertion | oppggrp | ⊢ ( 𝑅 ∈ Grp → 𝑂 ∈ Grp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppgbas.1 | ⊢ 𝑂 = ( oppg ‘ 𝑅 ) | |
| 2 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 3 | 1 2 | oppgbas | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑂 ) |
| 4 | 3 | a1i | ⊢ ( 𝑅 ∈ Grp → ( Base ‘ 𝑅 ) = ( Base ‘ 𝑂 ) ) |
| 5 | eqidd | ⊢ ( 𝑅 ∈ Grp → ( +g ‘ 𝑂 ) = ( +g ‘ 𝑂 ) ) | |
| 6 | eqid | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) | |
| 7 | 1 6 | oppgid | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑂 ) |
| 8 | 7 | a1i | ⊢ ( 𝑅 ∈ Grp → ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑂 ) ) |
| 9 | grpmnd | ⊢ ( 𝑅 ∈ Grp → 𝑅 ∈ Mnd ) | |
| 10 | 1 | oppgmnd | ⊢ ( 𝑅 ∈ Mnd → 𝑂 ∈ Mnd ) |
| 11 | 9 10 | syl | ⊢ ( 𝑅 ∈ Grp → 𝑂 ∈ Mnd ) |
| 12 | eqid | ⊢ ( invg ‘ 𝑅 ) = ( invg ‘ 𝑅 ) | |
| 13 | 2 12 | grpinvcl | ⊢ ( ( 𝑅 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝑅 ) ) |
| 14 | eqid | ⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) | |
| 15 | eqid | ⊢ ( +g ‘ 𝑂 ) = ( +g ‘ 𝑂 ) | |
| 16 | 14 1 15 | oppgplus | ⊢ ( ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ( +g ‘ 𝑂 ) 𝑥 ) = ( 𝑥 ( +g ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ) |
| 17 | 2 14 6 12 | grprinv | ⊢ ( ( 𝑅 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑥 ( +g ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ) = ( 0g ‘ 𝑅 ) ) |
| 18 | 16 17 | eqtrid | ⊢ ( ( 𝑅 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ( +g ‘ 𝑂 ) 𝑥 ) = ( 0g ‘ 𝑅 ) ) |
| 19 | 4 5 8 11 13 18 | isgrpd2 | ⊢ ( 𝑅 ∈ Grp → 𝑂 ∈ Grp ) |