This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function whose restriction is injective and the values of the remaining arguments are different from all other values is injective itself. (Contributed by Alexander van der Vekens, 31-Oct-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | injresinj | ⊢ ( 𝐾 ∈ ℕ0 → ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ Fun ◡ ( 𝐹 ↾ ( 1 ..^ 𝐾 ) ) ∧ ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) ) → ( ( ( 𝐹 “ { 0 , 𝐾 } ) ∩ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) = ∅ → Fun ◡ 𝐹 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fzo0ss1 | ⊢ ( 1 ..^ 𝐾 ) ⊆ ( 0 ..^ 𝐾 ) | |
| 2 | fzossfz | ⊢ ( 0 ..^ 𝐾 ) ⊆ ( 0 ... 𝐾 ) | |
| 3 | 1 2 | sstri | ⊢ ( 1 ..^ 𝐾 ) ⊆ ( 0 ... 𝐾 ) |
| 4 | fssres | ⊢ ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ ( 1 ..^ 𝐾 ) ⊆ ( 0 ... 𝐾 ) ) → ( 𝐹 ↾ ( 1 ..^ 𝐾 ) ) : ( 1 ..^ 𝐾 ) ⟶ 𝑉 ) | |
| 5 | 3 4 | mpan2 | ⊢ ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 → ( 𝐹 ↾ ( 1 ..^ 𝐾 ) ) : ( 1 ..^ 𝐾 ) ⟶ 𝑉 ) |
| 6 | 5 | biantrud | ⊢ ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 → ( Fun ◡ ( 𝐹 ↾ ( 1 ..^ 𝐾 ) ) ↔ ( Fun ◡ ( 𝐹 ↾ ( 1 ..^ 𝐾 ) ) ∧ ( 𝐹 ↾ ( 1 ..^ 𝐾 ) ) : ( 1 ..^ 𝐾 ) ⟶ 𝑉 ) ) ) |
| 7 | ancom | ⊢ ( ( Fun ◡ ( 𝐹 ↾ ( 1 ..^ 𝐾 ) ) ∧ ( 𝐹 ↾ ( 1 ..^ 𝐾 ) ) : ( 1 ..^ 𝐾 ) ⟶ 𝑉 ) ↔ ( ( 𝐹 ↾ ( 1 ..^ 𝐾 ) ) : ( 1 ..^ 𝐾 ) ⟶ 𝑉 ∧ Fun ◡ ( 𝐹 ↾ ( 1 ..^ 𝐾 ) ) ) ) | |
| 8 | df-f1 | ⊢ ( ( 𝐹 ↾ ( 1 ..^ 𝐾 ) ) : ( 1 ..^ 𝐾 ) –1-1→ 𝑉 ↔ ( ( 𝐹 ↾ ( 1 ..^ 𝐾 ) ) : ( 1 ..^ 𝐾 ) ⟶ 𝑉 ∧ Fun ◡ ( 𝐹 ↾ ( 1 ..^ 𝐾 ) ) ) ) | |
| 9 | 7 8 | bitr4i | ⊢ ( ( Fun ◡ ( 𝐹 ↾ ( 1 ..^ 𝐾 ) ) ∧ ( 𝐹 ↾ ( 1 ..^ 𝐾 ) ) : ( 1 ..^ 𝐾 ) ⟶ 𝑉 ) ↔ ( 𝐹 ↾ ( 1 ..^ 𝐾 ) ) : ( 1 ..^ 𝐾 ) –1-1→ 𝑉 ) |
| 10 | 6 9 | bitrdi | ⊢ ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 → ( Fun ◡ ( 𝐹 ↾ ( 1 ..^ 𝐾 ) ) ↔ ( 𝐹 ↾ ( 1 ..^ 𝐾 ) ) : ( 1 ..^ 𝐾 ) –1-1→ 𝑉 ) ) |
| 11 | simp-4r | ⊢ ( ( ( ( ( ( 𝐹 ↾ ( 1 ..^ 𝐾 ) ) : ( 1 ..^ 𝐾 ) –1-1→ 𝑉 ∧ 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ) ∧ ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( ( 𝐹 “ { 0 , 𝐾 } ) ∩ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) = ∅ ) → 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ) | |
| 12 | dff13 | ⊢ ( ( 𝐹 ↾ ( 1 ..^ 𝐾 ) ) : ( 1 ..^ 𝐾 ) –1-1→ 𝑉 ↔ ( ( 𝐹 ↾ ( 1 ..^ 𝐾 ) ) : ( 1 ..^ 𝐾 ) ⟶ 𝑉 ∧ ∀ 𝑣 ∈ ( 1 ..^ 𝐾 ) ∀ 𝑤 ∈ ( 1 ..^ 𝐾 ) ( ( ( 𝐹 ↾ ( 1 ..^ 𝐾 ) ) ‘ 𝑣 ) = ( ( 𝐹 ↾ ( 1 ..^ 𝐾 ) ) ‘ 𝑤 ) → 𝑣 = 𝑤 ) ) ) | |
| 13 | fveqeq2 | ⊢ ( 𝑣 = 𝑥 → ( ( ( 𝐹 ↾ ( 1 ..^ 𝐾 ) ) ‘ 𝑣 ) = ( ( 𝐹 ↾ ( 1 ..^ 𝐾 ) ) ‘ 𝑤 ) ↔ ( ( 𝐹 ↾ ( 1 ..^ 𝐾 ) ) ‘ 𝑥 ) = ( ( 𝐹 ↾ ( 1 ..^ 𝐾 ) ) ‘ 𝑤 ) ) ) | |
| 14 | equequ1 | ⊢ ( 𝑣 = 𝑥 → ( 𝑣 = 𝑤 ↔ 𝑥 = 𝑤 ) ) | |
| 15 | 13 14 | imbi12d | ⊢ ( 𝑣 = 𝑥 → ( ( ( ( 𝐹 ↾ ( 1 ..^ 𝐾 ) ) ‘ 𝑣 ) = ( ( 𝐹 ↾ ( 1 ..^ 𝐾 ) ) ‘ 𝑤 ) → 𝑣 = 𝑤 ) ↔ ( ( ( 𝐹 ↾ ( 1 ..^ 𝐾 ) ) ‘ 𝑥 ) = ( ( 𝐹 ↾ ( 1 ..^ 𝐾 ) ) ‘ 𝑤 ) → 𝑥 = 𝑤 ) ) ) |
| 16 | fveq2 | ⊢ ( 𝑤 = 𝑦 → ( ( 𝐹 ↾ ( 1 ..^ 𝐾 ) ) ‘ 𝑤 ) = ( ( 𝐹 ↾ ( 1 ..^ 𝐾 ) ) ‘ 𝑦 ) ) | |
| 17 | 16 | eqeq2d | ⊢ ( 𝑤 = 𝑦 → ( ( ( 𝐹 ↾ ( 1 ..^ 𝐾 ) ) ‘ 𝑥 ) = ( ( 𝐹 ↾ ( 1 ..^ 𝐾 ) ) ‘ 𝑤 ) ↔ ( ( 𝐹 ↾ ( 1 ..^ 𝐾 ) ) ‘ 𝑥 ) = ( ( 𝐹 ↾ ( 1 ..^ 𝐾 ) ) ‘ 𝑦 ) ) ) |
| 18 | equequ2 | ⊢ ( 𝑤 = 𝑦 → ( 𝑥 = 𝑤 ↔ 𝑥 = 𝑦 ) ) | |
| 19 | 17 18 | imbi12d | ⊢ ( 𝑤 = 𝑦 → ( ( ( ( 𝐹 ↾ ( 1 ..^ 𝐾 ) ) ‘ 𝑥 ) = ( ( 𝐹 ↾ ( 1 ..^ 𝐾 ) ) ‘ 𝑤 ) → 𝑥 = 𝑤 ) ↔ ( ( ( 𝐹 ↾ ( 1 ..^ 𝐾 ) ) ‘ 𝑥 ) = ( ( 𝐹 ↾ ( 1 ..^ 𝐾 ) ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
| 20 | 15 19 | rspc2va | ⊢ ( ( ( 𝑥 ∈ ( 1 ..^ 𝐾 ) ∧ 𝑦 ∈ ( 1 ..^ 𝐾 ) ) ∧ ∀ 𝑣 ∈ ( 1 ..^ 𝐾 ) ∀ 𝑤 ∈ ( 1 ..^ 𝐾 ) ( ( ( 𝐹 ↾ ( 1 ..^ 𝐾 ) ) ‘ 𝑣 ) = ( ( 𝐹 ↾ ( 1 ..^ 𝐾 ) ) ‘ 𝑤 ) → 𝑣 = 𝑤 ) ) → ( ( ( 𝐹 ↾ ( 1 ..^ 𝐾 ) ) ‘ 𝑥 ) = ( ( 𝐹 ↾ ( 1 ..^ 𝐾 ) ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 21 | fvres | ⊢ ( 𝑥 ∈ ( 1 ..^ 𝐾 ) → ( ( 𝐹 ↾ ( 1 ..^ 𝐾 ) ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) | |
| 22 | 21 | eqcomd | ⊢ ( 𝑥 ∈ ( 1 ..^ 𝐾 ) → ( 𝐹 ‘ 𝑥 ) = ( ( 𝐹 ↾ ( 1 ..^ 𝐾 ) ) ‘ 𝑥 ) ) |
| 23 | fvres | ⊢ ( 𝑦 ∈ ( 1 ..^ 𝐾 ) → ( ( 𝐹 ↾ ( 1 ..^ 𝐾 ) ) ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) | |
| 24 | 23 | eqcomd | ⊢ ( 𝑦 ∈ ( 1 ..^ 𝐾 ) → ( 𝐹 ‘ 𝑦 ) = ( ( 𝐹 ↾ ( 1 ..^ 𝐾 ) ) ‘ 𝑦 ) ) |
| 25 | 22 24 | eqeqan12d | ⊢ ( ( 𝑥 ∈ ( 1 ..^ 𝐾 ) ∧ 𝑦 ∈ ( 1 ..^ 𝐾 ) ) → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ↔ ( ( 𝐹 ↾ ( 1 ..^ 𝐾 ) ) ‘ 𝑥 ) = ( ( 𝐹 ↾ ( 1 ..^ 𝐾 ) ) ‘ 𝑦 ) ) ) |
| 26 | 25 | biimpd | ⊢ ( ( 𝑥 ∈ ( 1 ..^ 𝐾 ) ∧ 𝑦 ∈ ( 1 ..^ 𝐾 ) ) → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → ( ( 𝐹 ↾ ( 1 ..^ 𝐾 ) ) ‘ 𝑥 ) = ( ( 𝐹 ↾ ( 1 ..^ 𝐾 ) ) ‘ 𝑦 ) ) ) |
| 27 | 26 | imim1d | ⊢ ( ( 𝑥 ∈ ( 1 ..^ 𝐾 ) ∧ 𝑦 ∈ ( 1 ..^ 𝐾 ) ) → ( ( ( ( 𝐹 ↾ ( 1 ..^ 𝐾 ) ) ‘ 𝑥 ) = ( ( 𝐹 ↾ ( 1 ..^ 𝐾 ) ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
| 28 | 27 | imp | ⊢ ( ( ( 𝑥 ∈ ( 1 ..^ 𝐾 ) ∧ 𝑦 ∈ ( 1 ..^ 𝐾 ) ) ∧ ( ( ( 𝐹 ↾ ( 1 ..^ 𝐾 ) ) ‘ 𝑥 ) = ( ( 𝐹 ↾ ( 1 ..^ 𝐾 ) ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 29 | 28 | 2a1d | ⊢ ( ( ( 𝑥 ∈ ( 1 ..^ 𝐾 ) ∧ 𝑦 ∈ ( 1 ..^ 𝐾 ) ) ∧ ( ( ( 𝐹 ↾ ( 1 ..^ 𝐾 ) ) ‘ 𝑥 ) = ( ( 𝐹 ↾ ( 1 ..^ 𝐾 ) ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) → ( ( ( 𝐹 “ { 0 , 𝐾 } ) ∩ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) = ∅ → ( ( 𝑥 ∈ ( 0 ... 𝐾 ) ∧ 𝑦 ∈ ( 0 ... 𝐾 ) ) → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) ) |
| 30 | 29 | 2a1d | ⊢ ( ( ( 𝑥 ∈ ( 1 ..^ 𝐾 ) ∧ 𝑦 ∈ ( 1 ..^ 𝐾 ) ) ∧ ( ( ( 𝐹 ↾ ( 1 ..^ 𝐾 ) ) ‘ 𝑥 ) = ( ( 𝐹 ↾ ( 1 ..^ 𝐾 ) ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) → ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( ( ( 𝐹 “ { 0 , 𝐾 } ) ∩ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) = ∅ → ( ( 𝑥 ∈ ( 0 ... 𝐾 ) ∧ 𝑦 ∈ ( 0 ... 𝐾 ) ) → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) ) ) ) |
| 31 | 30 | expcom | ⊢ ( ( ( ( 𝐹 ↾ ( 1 ..^ 𝐾 ) ) ‘ 𝑥 ) = ( ( 𝐹 ↾ ( 1 ..^ 𝐾 ) ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) → ( ( 𝑥 ∈ ( 1 ..^ 𝐾 ) ∧ 𝑦 ∈ ( 1 ..^ 𝐾 ) ) → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) → ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( ( ( 𝐹 “ { 0 , 𝐾 } ) ∩ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) = ∅ → ( ( 𝑥 ∈ ( 0 ... 𝐾 ) ∧ 𝑦 ∈ ( 0 ... 𝐾 ) ) → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) ) ) ) ) |
| 32 | 20 31 | syl | ⊢ ( ( ( 𝑥 ∈ ( 1 ..^ 𝐾 ) ∧ 𝑦 ∈ ( 1 ..^ 𝐾 ) ) ∧ ∀ 𝑣 ∈ ( 1 ..^ 𝐾 ) ∀ 𝑤 ∈ ( 1 ..^ 𝐾 ) ( ( ( 𝐹 ↾ ( 1 ..^ 𝐾 ) ) ‘ 𝑣 ) = ( ( 𝐹 ↾ ( 1 ..^ 𝐾 ) ) ‘ 𝑤 ) → 𝑣 = 𝑤 ) ) → ( ( 𝑥 ∈ ( 1 ..^ 𝐾 ) ∧ 𝑦 ∈ ( 1 ..^ 𝐾 ) ) → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) → ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( ( ( 𝐹 “ { 0 , 𝐾 } ) ∩ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) = ∅ → ( ( 𝑥 ∈ ( 0 ... 𝐾 ) ∧ 𝑦 ∈ ( 0 ... 𝐾 ) ) → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) ) ) ) ) |
| 33 | 32 | ex | ⊢ ( ( 𝑥 ∈ ( 1 ..^ 𝐾 ) ∧ 𝑦 ∈ ( 1 ..^ 𝐾 ) ) → ( ∀ 𝑣 ∈ ( 1 ..^ 𝐾 ) ∀ 𝑤 ∈ ( 1 ..^ 𝐾 ) ( ( ( 𝐹 ↾ ( 1 ..^ 𝐾 ) ) ‘ 𝑣 ) = ( ( 𝐹 ↾ ( 1 ..^ 𝐾 ) ) ‘ 𝑤 ) → 𝑣 = 𝑤 ) → ( ( 𝑥 ∈ ( 1 ..^ 𝐾 ) ∧ 𝑦 ∈ ( 1 ..^ 𝐾 ) ) → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) → ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( ( ( 𝐹 “ { 0 , 𝐾 } ) ∩ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) = ∅ → ( ( 𝑥 ∈ ( 0 ... 𝐾 ) ∧ 𝑦 ∈ ( 0 ... 𝐾 ) ) → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) ) ) ) ) ) |
| 34 | 33 | pm2.43a | ⊢ ( ( 𝑥 ∈ ( 1 ..^ 𝐾 ) ∧ 𝑦 ∈ ( 1 ..^ 𝐾 ) ) → ( ∀ 𝑣 ∈ ( 1 ..^ 𝐾 ) ∀ 𝑤 ∈ ( 1 ..^ 𝐾 ) ( ( ( 𝐹 ↾ ( 1 ..^ 𝐾 ) ) ‘ 𝑣 ) = ( ( 𝐹 ↾ ( 1 ..^ 𝐾 ) ) ‘ 𝑤 ) → 𝑣 = 𝑤 ) → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) → ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( ( ( 𝐹 “ { 0 , 𝐾 } ) ∩ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) = ∅ → ( ( 𝑥 ∈ ( 0 ... 𝐾 ) ∧ 𝑦 ∈ ( 0 ... 𝐾 ) ) → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) ) ) ) ) |
| 35 | ianor | ⊢ ( ¬ ( 𝑥 ∈ ( 1 ..^ 𝐾 ) ∧ 𝑦 ∈ ( 1 ..^ 𝐾 ) ) ↔ ( ¬ 𝑥 ∈ ( 1 ..^ 𝐾 ) ∨ ¬ 𝑦 ∈ ( 1 ..^ 𝐾 ) ) ) | |
| 36 | eqcom | ⊢ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) ) | |
| 37 | injresinjlem | ⊢ ( ¬ 𝑥 ∈ ( 1 ..^ 𝐾 ) → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) → ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( ( ( 𝐹 “ { 0 , 𝐾 } ) ∩ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) = ∅ → ( ( 𝑦 ∈ ( 0 ... 𝐾 ) ∧ 𝑥 ∈ ( 0 ... 𝐾 ) ) → ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) → 𝑦 = 𝑥 ) ) ) ) ) ) | |
| 38 | 37 | imp | ⊢ ( ( ¬ 𝑥 ∈ ( 1 ..^ 𝐾 ) ∧ ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) ) → ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( ( ( 𝐹 “ { 0 , 𝐾 } ) ∩ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) = ∅ → ( ( 𝑦 ∈ ( 0 ... 𝐾 ) ∧ 𝑥 ∈ ( 0 ... 𝐾 ) ) → ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) → 𝑦 = 𝑥 ) ) ) ) ) |
| 39 | 38 | imp41 | ⊢ ( ( ( ( ( ¬ 𝑥 ∈ ( 1 ..^ 𝐾 ) ∧ ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) ) ∧ ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) ) ∧ ( ( 𝐹 “ { 0 , 𝐾 } ) ∩ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) = ∅ ) ∧ ( 𝑦 ∈ ( 0 ... 𝐾 ) ∧ 𝑥 ∈ ( 0 ... 𝐾 ) ) ) → ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) → 𝑦 = 𝑥 ) ) |
| 40 | eqcom | ⊢ ( 𝑦 = 𝑥 ↔ 𝑥 = 𝑦 ) | |
| 41 | 39 40 | imbitrdi | ⊢ ( ( ( ( ( ¬ 𝑥 ∈ ( 1 ..^ 𝐾 ) ∧ ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) ) ∧ ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) ) ∧ ( ( 𝐹 “ { 0 , 𝐾 } ) ∩ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) = ∅ ) ∧ ( 𝑦 ∈ ( 0 ... 𝐾 ) ∧ 𝑥 ∈ ( 0 ... 𝐾 ) ) ) → ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) → 𝑥 = 𝑦 ) ) |
| 42 | 36 41 | biimtrid | ⊢ ( ( ( ( ( ¬ 𝑥 ∈ ( 1 ..^ 𝐾 ) ∧ ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) ) ∧ ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) ) ∧ ( ( 𝐹 “ { 0 , 𝐾 } ) ∩ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) = ∅ ) ∧ ( 𝑦 ∈ ( 0 ... 𝐾 ) ∧ 𝑥 ∈ ( 0 ... 𝐾 ) ) ) → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 43 | 42 | ex | ⊢ ( ( ( ( ¬ 𝑥 ∈ ( 1 ..^ 𝐾 ) ∧ ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) ) ∧ ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) ) ∧ ( ( 𝐹 “ { 0 , 𝐾 } ) ∩ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) = ∅ ) → ( ( 𝑦 ∈ ( 0 ... 𝐾 ) ∧ 𝑥 ∈ ( 0 ... 𝐾 ) ) → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
| 44 | 43 | ancomsd | ⊢ ( ( ( ( ¬ 𝑥 ∈ ( 1 ..^ 𝐾 ) ∧ ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) ) ∧ ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) ) ∧ ( ( 𝐹 “ { 0 , 𝐾 } ) ∩ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) = ∅ ) → ( ( 𝑥 ∈ ( 0 ... 𝐾 ) ∧ 𝑦 ∈ ( 0 ... 𝐾 ) ) → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
| 45 | 44 | exp41 | ⊢ ( ¬ 𝑥 ∈ ( 1 ..^ 𝐾 ) → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) → ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( ( ( 𝐹 “ { 0 , 𝐾 } ) ∩ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) = ∅ → ( ( 𝑥 ∈ ( 0 ... 𝐾 ) ∧ 𝑦 ∈ ( 0 ... 𝐾 ) ) → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) ) ) ) |
| 46 | injresinjlem | ⊢ ( ¬ 𝑦 ∈ ( 1 ..^ 𝐾 ) → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) → ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( ( ( 𝐹 “ { 0 , 𝐾 } ) ∩ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) = ∅ → ( ( 𝑥 ∈ ( 0 ... 𝐾 ) ∧ 𝑦 ∈ ( 0 ... 𝐾 ) ) → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) ) ) ) | |
| 47 | 45 46 | jaoi | ⊢ ( ( ¬ 𝑥 ∈ ( 1 ..^ 𝐾 ) ∨ ¬ 𝑦 ∈ ( 1 ..^ 𝐾 ) ) → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) → ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( ( ( 𝐹 “ { 0 , 𝐾 } ) ∩ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) = ∅ → ( ( 𝑥 ∈ ( 0 ... 𝐾 ) ∧ 𝑦 ∈ ( 0 ... 𝐾 ) ) → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) ) ) ) |
| 48 | 47 | a1d | ⊢ ( ( ¬ 𝑥 ∈ ( 1 ..^ 𝐾 ) ∨ ¬ 𝑦 ∈ ( 1 ..^ 𝐾 ) ) → ( ∀ 𝑣 ∈ ( 1 ..^ 𝐾 ) ∀ 𝑤 ∈ ( 1 ..^ 𝐾 ) ( ( ( 𝐹 ↾ ( 1 ..^ 𝐾 ) ) ‘ 𝑣 ) = ( ( 𝐹 ↾ ( 1 ..^ 𝐾 ) ) ‘ 𝑤 ) → 𝑣 = 𝑤 ) → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) → ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( ( ( 𝐹 “ { 0 , 𝐾 } ) ∩ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) = ∅ → ( ( 𝑥 ∈ ( 0 ... 𝐾 ) ∧ 𝑦 ∈ ( 0 ... 𝐾 ) ) → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) ) ) ) ) |
| 49 | 35 48 | sylbi | ⊢ ( ¬ ( 𝑥 ∈ ( 1 ..^ 𝐾 ) ∧ 𝑦 ∈ ( 1 ..^ 𝐾 ) ) → ( ∀ 𝑣 ∈ ( 1 ..^ 𝐾 ) ∀ 𝑤 ∈ ( 1 ..^ 𝐾 ) ( ( ( 𝐹 ↾ ( 1 ..^ 𝐾 ) ) ‘ 𝑣 ) = ( ( 𝐹 ↾ ( 1 ..^ 𝐾 ) ) ‘ 𝑤 ) → 𝑣 = 𝑤 ) → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) → ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( ( ( 𝐹 “ { 0 , 𝐾 } ) ∩ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) = ∅ → ( ( 𝑥 ∈ ( 0 ... 𝐾 ) ∧ 𝑦 ∈ ( 0 ... 𝐾 ) ) → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) ) ) ) ) |
| 50 | 34 49 | pm2.61i | ⊢ ( ∀ 𝑣 ∈ ( 1 ..^ 𝐾 ) ∀ 𝑤 ∈ ( 1 ..^ 𝐾 ) ( ( ( 𝐹 ↾ ( 1 ..^ 𝐾 ) ) ‘ 𝑣 ) = ( ( 𝐹 ↾ ( 1 ..^ 𝐾 ) ) ‘ 𝑤 ) → 𝑣 = 𝑤 ) → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) → ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( ( ( 𝐹 “ { 0 , 𝐾 } ) ∩ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) = ∅ → ( ( 𝑥 ∈ ( 0 ... 𝐾 ) ∧ 𝑦 ∈ ( 0 ... 𝐾 ) ) → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) ) ) ) |
| 51 | 50 | imp41 | ⊢ ( ( ( ( ∀ 𝑣 ∈ ( 1 ..^ 𝐾 ) ∀ 𝑤 ∈ ( 1 ..^ 𝐾 ) ( ( ( 𝐹 ↾ ( 1 ..^ 𝐾 ) ) ‘ 𝑣 ) = ( ( 𝐹 ↾ ( 1 ..^ 𝐾 ) ) ‘ 𝑤 ) → 𝑣 = 𝑤 ) ∧ ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) ) ∧ ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) ) ∧ ( ( 𝐹 “ { 0 , 𝐾 } ) ∩ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) = ∅ ) → ( ( 𝑥 ∈ ( 0 ... 𝐾 ) ∧ 𝑦 ∈ ( 0 ... 𝐾 ) ) → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
| 52 | 51 | ralrimivv | ⊢ ( ( ( ( ∀ 𝑣 ∈ ( 1 ..^ 𝐾 ) ∀ 𝑤 ∈ ( 1 ..^ 𝐾 ) ( ( ( 𝐹 ↾ ( 1 ..^ 𝐾 ) ) ‘ 𝑣 ) = ( ( 𝐹 ↾ ( 1 ..^ 𝐾 ) ) ‘ 𝑤 ) → 𝑣 = 𝑤 ) ∧ ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) ) ∧ ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) ) ∧ ( ( 𝐹 “ { 0 , 𝐾 } ) ∩ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) = ∅ ) → ∀ 𝑥 ∈ ( 0 ... 𝐾 ) ∀ 𝑦 ∈ ( 0 ... 𝐾 ) ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 53 | 52 | exp41 | ⊢ ( ∀ 𝑣 ∈ ( 1 ..^ 𝐾 ) ∀ 𝑤 ∈ ( 1 ..^ 𝐾 ) ( ( ( 𝐹 ↾ ( 1 ..^ 𝐾 ) ) ‘ 𝑣 ) = ( ( 𝐹 ↾ ( 1 ..^ 𝐾 ) ) ‘ 𝑤 ) → 𝑣 = 𝑤 ) → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) → ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( ( ( 𝐹 “ { 0 , 𝐾 } ) ∩ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) = ∅ → ∀ 𝑥 ∈ ( 0 ... 𝐾 ) ∀ 𝑦 ∈ ( 0 ... 𝐾 ) ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) ) ) |
| 54 | 12 53 | simplbiim | ⊢ ( ( 𝐹 ↾ ( 1 ..^ 𝐾 ) ) : ( 1 ..^ 𝐾 ) –1-1→ 𝑉 → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) → ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( ( ( 𝐹 “ { 0 , 𝐾 } ) ∩ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) = ∅ → ∀ 𝑥 ∈ ( 0 ... 𝐾 ) ∀ 𝑦 ∈ ( 0 ... 𝐾 ) ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) ) ) |
| 55 | 54 | com13 | ⊢ ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) → ( ( 𝐹 ↾ ( 1 ..^ 𝐾 ) ) : ( 1 ..^ 𝐾 ) –1-1→ 𝑉 → ( ( ( 𝐹 “ { 0 , 𝐾 } ) ∩ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) = ∅ → ∀ 𝑥 ∈ ( 0 ... 𝐾 ) ∀ 𝑦 ∈ ( 0 ... 𝐾 ) ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) ) ) |
| 56 | 55 | ex | ⊢ ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 → ( 𝐾 ∈ ℕ0 → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) → ( ( 𝐹 ↾ ( 1 ..^ 𝐾 ) ) : ( 1 ..^ 𝐾 ) –1-1→ 𝑉 → ( ( ( 𝐹 “ { 0 , 𝐾 } ) ∩ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) = ∅ → ∀ 𝑥 ∈ ( 0 ... 𝐾 ) ∀ 𝑦 ∈ ( 0 ... 𝐾 ) ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) ) ) ) |
| 57 | 56 | com24 | ⊢ ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 → ( ( 𝐹 ↾ ( 1 ..^ 𝐾 ) ) : ( 1 ..^ 𝐾 ) –1-1→ 𝑉 → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) → ( 𝐾 ∈ ℕ0 → ( ( ( 𝐹 “ { 0 , 𝐾 } ) ∩ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) = ∅ → ∀ 𝑥 ∈ ( 0 ... 𝐾 ) ∀ 𝑦 ∈ ( 0 ... 𝐾 ) ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) ) ) ) |
| 58 | 57 | impcom | ⊢ ( ( ( 𝐹 ↾ ( 1 ..^ 𝐾 ) ) : ( 1 ..^ 𝐾 ) –1-1→ 𝑉 ∧ 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ) → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) → ( 𝐾 ∈ ℕ0 → ( ( ( 𝐹 “ { 0 , 𝐾 } ) ∩ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) = ∅ → ∀ 𝑥 ∈ ( 0 ... 𝐾 ) ∀ 𝑦 ∈ ( 0 ... 𝐾 ) ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) ) ) |
| 59 | 58 | imp41 | ⊢ ( ( ( ( ( ( 𝐹 ↾ ( 1 ..^ 𝐾 ) ) : ( 1 ..^ 𝐾 ) –1-1→ 𝑉 ∧ 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ) ∧ ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( ( 𝐹 “ { 0 , 𝐾 } ) ∩ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) = ∅ ) → ∀ 𝑥 ∈ ( 0 ... 𝐾 ) ∀ 𝑦 ∈ ( 0 ... 𝐾 ) ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 60 | dff13 | ⊢ ( 𝐹 : ( 0 ... 𝐾 ) –1-1→ 𝑉 ↔ ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ ∀ 𝑥 ∈ ( 0 ... 𝐾 ) ∀ 𝑦 ∈ ( 0 ... 𝐾 ) ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) | |
| 61 | 11 59 60 | sylanbrc | ⊢ ( ( ( ( ( ( 𝐹 ↾ ( 1 ..^ 𝐾 ) ) : ( 1 ..^ 𝐾 ) –1-1→ 𝑉 ∧ 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ) ∧ ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( ( 𝐹 “ { 0 , 𝐾 } ) ∩ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) = ∅ ) → 𝐹 : ( 0 ... 𝐾 ) –1-1→ 𝑉 ) |
| 62 | 11 | biantrurd | ⊢ ( ( ( ( ( ( 𝐹 ↾ ( 1 ..^ 𝐾 ) ) : ( 1 ..^ 𝐾 ) –1-1→ 𝑉 ∧ 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ) ∧ ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( ( 𝐹 “ { 0 , 𝐾 } ) ∩ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) = ∅ ) → ( Fun ◡ 𝐹 ↔ ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ Fun ◡ 𝐹 ) ) ) |
| 63 | df-f1 | ⊢ ( 𝐹 : ( 0 ... 𝐾 ) –1-1→ 𝑉 ↔ ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ Fun ◡ 𝐹 ) ) | |
| 64 | 62 63 | bitr4di | ⊢ ( ( ( ( ( ( 𝐹 ↾ ( 1 ..^ 𝐾 ) ) : ( 1 ..^ 𝐾 ) –1-1→ 𝑉 ∧ 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ) ∧ ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( ( 𝐹 “ { 0 , 𝐾 } ) ∩ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) = ∅ ) → ( Fun ◡ 𝐹 ↔ 𝐹 : ( 0 ... 𝐾 ) –1-1→ 𝑉 ) ) |
| 65 | 61 64 | mpbird | ⊢ ( ( ( ( ( ( 𝐹 ↾ ( 1 ..^ 𝐾 ) ) : ( 1 ..^ 𝐾 ) –1-1→ 𝑉 ∧ 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ) ∧ ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( ( 𝐹 “ { 0 , 𝐾 } ) ∩ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) = ∅ ) → Fun ◡ 𝐹 ) |
| 66 | 65 | ex | ⊢ ( ( ( ( ( 𝐹 ↾ ( 1 ..^ 𝐾 ) ) : ( 1 ..^ 𝐾 ) –1-1→ 𝑉 ∧ 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ) ∧ ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) ) ∧ 𝐾 ∈ ℕ0 ) → ( ( ( 𝐹 “ { 0 , 𝐾 } ) ∩ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) = ∅ → Fun ◡ 𝐹 ) ) |
| 67 | 66 | exp41 | ⊢ ( ( 𝐹 ↾ ( 1 ..^ 𝐾 ) ) : ( 1 ..^ 𝐾 ) –1-1→ 𝑉 → ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) → ( 𝐾 ∈ ℕ0 → ( ( ( 𝐹 “ { 0 , 𝐾 } ) ∩ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) = ∅ → Fun ◡ 𝐹 ) ) ) ) ) |
| 68 | 10 67 | biimtrdi | ⊢ ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 → ( Fun ◡ ( 𝐹 ↾ ( 1 ..^ 𝐾 ) ) → ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) → ( 𝐾 ∈ ℕ0 → ( ( ( 𝐹 “ { 0 , 𝐾 } ) ∩ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) = ∅ → Fun ◡ 𝐹 ) ) ) ) ) ) |
| 69 | 68 | pm2.43a | ⊢ ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 → ( Fun ◡ ( 𝐹 ↾ ( 1 ..^ 𝐾 ) ) → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) → ( 𝐾 ∈ ℕ0 → ( ( ( 𝐹 “ { 0 , 𝐾 } ) ∩ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) = ∅ → Fun ◡ 𝐹 ) ) ) ) ) |
| 70 | 69 | 3imp | ⊢ ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ Fun ◡ ( 𝐹 ↾ ( 1 ..^ 𝐾 ) ) ∧ ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) ) → ( 𝐾 ∈ ℕ0 → ( ( ( 𝐹 “ { 0 , 𝐾 } ) ∩ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) = ∅ → Fun ◡ 𝐹 ) ) ) |
| 71 | 70 | com12 | ⊢ ( 𝐾 ∈ ℕ0 → ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ Fun ◡ ( 𝐹 ↾ ( 1 ..^ 𝐾 ) ) ∧ ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) ) → ( ( ( 𝐹 “ { 0 , 𝐾 } ) ∩ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) = ∅ → Fun ◡ 𝐹 ) ) ) |