This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for injresinj . (Contributed by Alexander van der Vekens, 31-Oct-2017) (Proof shortened by AV, 14-Feb-2021) (Revised by Thierry Arnoux, 23-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | injresinjlem | |- ( -. Y e. ( 1 ..^ K ) -> ( ( F ` 0 ) =/= ( F ` K ) -> ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( ( ( F " { 0 , K } ) i^i ( F " ( 1 ..^ K ) ) ) = (/) -> ( ( X e. ( 0 ... K ) /\ Y e. ( 0 ... K ) ) -> ( ( F ` X ) = ( F ` Y ) -> X = Y ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfznelfzo | |- ( ( Y e. ( 0 ... K ) /\ -. Y e. ( 1 ..^ K ) ) -> ( Y = 0 \/ Y = K ) ) |
|
| 2 | fvinim0ffz | |- ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( ( ( F " { 0 , K } ) i^i ( F " ( 1 ..^ K ) ) ) = (/) <-> ( ( F ` 0 ) e/ ( F " ( 1 ..^ K ) ) /\ ( F ` K ) e/ ( F " ( 1 ..^ K ) ) ) ) ) |
|
| 3 | df-nel | |- ( ( F ` 0 ) e/ ( F " ( 1 ..^ K ) ) <-> -. ( F ` 0 ) e. ( F " ( 1 ..^ K ) ) ) |
|
| 4 | fveq2 | |- ( 0 = Y -> ( F ` 0 ) = ( F ` Y ) ) |
|
| 5 | 4 | eqcoms | |- ( Y = 0 -> ( F ` 0 ) = ( F ` Y ) ) |
| 6 | 5 | eleq1d | |- ( Y = 0 -> ( ( F ` 0 ) e. ( F " ( 1 ..^ K ) ) <-> ( F ` Y ) e. ( F " ( 1 ..^ K ) ) ) ) |
| 7 | 6 | notbid | |- ( Y = 0 -> ( -. ( F ` 0 ) e. ( F " ( 1 ..^ K ) ) <-> -. ( F ` Y ) e. ( F " ( 1 ..^ K ) ) ) ) |
| 8 | 7 | biimpd | |- ( Y = 0 -> ( -. ( F ` 0 ) e. ( F " ( 1 ..^ K ) ) -> -. ( F ` Y ) e. ( F " ( 1 ..^ K ) ) ) ) |
| 9 | ffn | |- ( F : ( 0 ... K ) --> V -> F Fn ( 0 ... K ) ) |
|
| 10 | 1eluzge0 | |- 1 e. ( ZZ>= ` 0 ) |
|
| 11 | fzoss1 | |- ( 1 e. ( ZZ>= ` 0 ) -> ( 1 ..^ K ) C_ ( 0 ..^ K ) ) |
|
| 12 | 10 11 | mp1i | |- ( K e. NN0 -> ( 1 ..^ K ) C_ ( 0 ..^ K ) ) |
| 13 | fzossfz | |- ( 0 ..^ K ) C_ ( 0 ... K ) |
|
| 14 | 12 13 | sstrdi | |- ( K e. NN0 -> ( 1 ..^ K ) C_ ( 0 ... K ) ) |
| 15 | fvelimab | |- ( ( F Fn ( 0 ... K ) /\ ( 1 ..^ K ) C_ ( 0 ... K ) ) -> ( ( F ` Y ) e. ( F " ( 1 ..^ K ) ) <-> E. z e. ( 1 ..^ K ) ( F ` z ) = ( F ` Y ) ) ) |
|
| 16 | 9 14 15 | syl2an | |- ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( ( F ` Y ) e. ( F " ( 1 ..^ K ) ) <-> E. z e. ( 1 ..^ K ) ( F ` z ) = ( F ` Y ) ) ) |
| 17 | 16 | notbid | |- ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( -. ( F ` Y ) e. ( F " ( 1 ..^ K ) ) <-> -. E. z e. ( 1 ..^ K ) ( F ` z ) = ( F ` Y ) ) ) |
| 18 | ralnex | |- ( A. z e. ( 1 ..^ K ) -. ( F ` z ) = ( F ` Y ) <-> -. E. z e. ( 1 ..^ K ) ( F ` z ) = ( F ` Y ) ) |
|
| 19 | fveqeq2 | |- ( z = X -> ( ( F ` z ) = ( F ` Y ) <-> ( F ` X ) = ( F ` Y ) ) ) |
|
| 20 | 19 | notbid | |- ( z = X -> ( -. ( F ` z ) = ( F ` Y ) <-> -. ( F ` X ) = ( F ` Y ) ) ) |
| 21 | 20 | rspcva | |- ( ( X e. ( 1 ..^ K ) /\ A. z e. ( 1 ..^ K ) -. ( F ` z ) = ( F ` Y ) ) -> -. ( F ` X ) = ( F ` Y ) ) |
| 22 | pm2.21 | |- ( -. ( F ` X ) = ( F ` Y ) -> ( ( F ` X ) = ( F ` Y ) -> X = Y ) ) |
|
| 23 | 22 | a1d | |- ( -. ( F ` X ) = ( F ` Y ) -> ( ( F ` 0 ) =/= ( F ` K ) -> ( ( F ` X ) = ( F ` Y ) -> X = Y ) ) ) |
| 24 | 23 | 2a1d | |- ( -. ( F ` X ) = ( F ` Y ) -> ( X e. ( 0 ... K ) -> ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( ( F ` 0 ) =/= ( F ` K ) -> ( ( F ` X ) = ( F ` Y ) -> X = Y ) ) ) ) ) |
| 25 | 21 24 | syl | |- ( ( X e. ( 1 ..^ K ) /\ A. z e. ( 1 ..^ K ) -. ( F ` z ) = ( F ` Y ) ) -> ( X e. ( 0 ... K ) -> ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( ( F ` 0 ) =/= ( F ` K ) -> ( ( F ` X ) = ( F ` Y ) -> X = Y ) ) ) ) ) |
| 26 | 25 | expcom | |- ( A. z e. ( 1 ..^ K ) -. ( F ` z ) = ( F ` Y ) -> ( X e. ( 1 ..^ K ) -> ( X e. ( 0 ... K ) -> ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( ( F ` 0 ) =/= ( F ` K ) -> ( ( F ` X ) = ( F ` Y ) -> X = Y ) ) ) ) ) ) |
| 27 | 26 | com24 | |- ( A. z e. ( 1 ..^ K ) -. ( F ` z ) = ( F ` Y ) -> ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( X e. ( 0 ... K ) -> ( X e. ( 1 ..^ K ) -> ( ( F ` 0 ) =/= ( F ` K ) -> ( ( F ` X ) = ( F ` Y ) -> X = Y ) ) ) ) ) ) |
| 28 | 18 27 | sylbir | |- ( -. E. z e. ( 1 ..^ K ) ( F ` z ) = ( F ` Y ) -> ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( X e. ( 0 ... K ) -> ( X e. ( 1 ..^ K ) -> ( ( F ` 0 ) =/= ( F ` K ) -> ( ( F ` X ) = ( F ` Y ) -> X = Y ) ) ) ) ) ) |
| 29 | 28 | com12 | |- ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( -. E. z e. ( 1 ..^ K ) ( F ` z ) = ( F ` Y ) -> ( X e. ( 0 ... K ) -> ( X e. ( 1 ..^ K ) -> ( ( F ` 0 ) =/= ( F ` K ) -> ( ( F ` X ) = ( F ` Y ) -> X = Y ) ) ) ) ) ) |
| 30 | 17 29 | sylbid | |- ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( -. ( F ` Y ) e. ( F " ( 1 ..^ K ) ) -> ( X e. ( 0 ... K ) -> ( X e. ( 1 ..^ K ) -> ( ( F ` 0 ) =/= ( F ` K ) -> ( ( F ` X ) = ( F ` Y ) -> X = Y ) ) ) ) ) ) |
| 31 | 30 | com12 | |- ( -. ( F ` Y ) e. ( F " ( 1 ..^ K ) ) -> ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( X e. ( 0 ... K ) -> ( X e. ( 1 ..^ K ) -> ( ( F ` 0 ) =/= ( F ` K ) -> ( ( F ` X ) = ( F ` Y ) -> X = Y ) ) ) ) ) ) |
| 32 | 8 31 | syl6com | |- ( -. ( F ` 0 ) e. ( F " ( 1 ..^ K ) ) -> ( Y = 0 -> ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( X e. ( 0 ... K ) -> ( X e. ( 1 ..^ K ) -> ( ( F ` 0 ) =/= ( F ` K ) -> ( ( F ` X ) = ( F ` Y ) -> X = Y ) ) ) ) ) ) ) |
| 33 | 3 32 | sylbi | |- ( ( F ` 0 ) e/ ( F " ( 1 ..^ K ) ) -> ( Y = 0 -> ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( X e. ( 0 ... K ) -> ( X e. ( 1 ..^ K ) -> ( ( F ` 0 ) =/= ( F ` K ) -> ( ( F ` X ) = ( F ` Y ) -> X = Y ) ) ) ) ) ) ) |
| 34 | 33 | adantr | |- ( ( ( F ` 0 ) e/ ( F " ( 1 ..^ K ) ) /\ ( F ` K ) e/ ( F " ( 1 ..^ K ) ) ) -> ( Y = 0 -> ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( X e. ( 0 ... K ) -> ( X e. ( 1 ..^ K ) -> ( ( F ` 0 ) =/= ( F ` K ) -> ( ( F ` X ) = ( F ` Y ) -> X = Y ) ) ) ) ) ) ) |
| 35 | 34 | com12 | |- ( Y = 0 -> ( ( ( F ` 0 ) e/ ( F " ( 1 ..^ K ) ) /\ ( F ` K ) e/ ( F " ( 1 ..^ K ) ) ) -> ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( X e. ( 0 ... K ) -> ( X e. ( 1 ..^ K ) -> ( ( F ` 0 ) =/= ( F ` K ) -> ( ( F ` X ) = ( F ` Y ) -> X = Y ) ) ) ) ) ) ) |
| 36 | df-nel | |- ( ( F ` K ) e/ ( F " ( 1 ..^ K ) ) <-> -. ( F ` K ) e. ( F " ( 1 ..^ K ) ) ) |
|
| 37 | fveq2 | |- ( K = Y -> ( F ` K ) = ( F ` Y ) ) |
|
| 38 | 37 | eqcoms | |- ( Y = K -> ( F ` K ) = ( F ` Y ) ) |
| 39 | 38 | eleq1d | |- ( Y = K -> ( ( F ` K ) e. ( F " ( 1 ..^ K ) ) <-> ( F ` Y ) e. ( F " ( 1 ..^ K ) ) ) ) |
| 40 | 39 | notbid | |- ( Y = K -> ( -. ( F ` K ) e. ( F " ( 1 ..^ K ) ) <-> -. ( F ` Y ) e. ( F " ( 1 ..^ K ) ) ) ) |
| 41 | 40 | biimpd | |- ( Y = K -> ( -. ( F ` K ) e. ( F " ( 1 ..^ K ) ) -> -. ( F ` Y ) e. ( F " ( 1 ..^ K ) ) ) ) |
| 42 | 41 31 | syl6com | |- ( -. ( F ` K ) e. ( F " ( 1 ..^ K ) ) -> ( Y = K -> ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( X e. ( 0 ... K ) -> ( X e. ( 1 ..^ K ) -> ( ( F ` 0 ) =/= ( F ` K ) -> ( ( F ` X ) = ( F ` Y ) -> X = Y ) ) ) ) ) ) ) |
| 43 | 36 42 | sylbi | |- ( ( F ` K ) e/ ( F " ( 1 ..^ K ) ) -> ( Y = K -> ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( X e. ( 0 ... K ) -> ( X e. ( 1 ..^ K ) -> ( ( F ` 0 ) =/= ( F ` K ) -> ( ( F ` X ) = ( F ` Y ) -> X = Y ) ) ) ) ) ) ) |
| 44 | 43 | adantl | |- ( ( ( F ` 0 ) e/ ( F " ( 1 ..^ K ) ) /\ ( F ` K ) e/ ( F " ( 1 ..^ K ) ) ) -> ( Y = K -> ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( X e. ( 0 ... K ) -> ( X e. ( 1 ..^ K ) -> ( ( F ` 0 ) =/= ( F ` K ) -> ( ( F ` X ) = ( F ` Y ) -> X = Y ) ) ) ) ) ) ) |
| 45 | 44 | com12 | |- ( Y = K -> ( ( ( F ` 0 ) e/ ( F " ( 1 ..^ K ) ) /\ ( F ` K ) e/ ( F " ( 1 ..^ K ) ) ) -> ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( X e. ( 0 ... K ) -> ( X e. ( 1 ..^ K ) -> ( ( F ` 0 ) =/= ( F ` K ) -> ( ( F ` X ) = ( F ` Y ) -> X = Y ) ) ) ) ) ) ) |
| 46 | 35 45 | jaoi | |- ( ( Y = 0 \/ Y = K ) -> ( ( ( F ` 0 ) e/ ( F " ( 1 ..^ K ) ) /\ ( F ` K ) e/ ( F " ( 1 ..^ K ) ) ) -> ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( X e. ( 0 ... K ) -> ( X e. ( 1 ..^ K ) -> ( ( F ` 0 ) =/= ( F ` K ) -> ( ( F ` X ) = ( F ` Y ) -> X = Y ) ) ) ) ) ) ) |
| 47 | 46 | com13 | |- ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( ( ( F ` 0 ) e/ ( F " ( 1 ..^ K ) ) /\ ( F ` K ) e/ ( F " ( 1 ..^ K ) ) ) -> ( ( Y = 0 \/ Y = K ) -> ( X e. ( 0 ... K ) -> ( X e. ( 1 ..^ K ) -> ( ( F ` 0 ) =/= ( F ` K ) -> ( ( F ` X ) = ( F ` Y ) -> X = Y ) ) ) ) ) ) ) |
| 48 | 2 47 | sylbid | |- ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( ( ( F " { 0 , K } ) i^i ( F " ( 1 ..^ K ) ) ) = (/) -> ( ( Y = 0 \/ Y = K ) -> ( X e. ( 0 ... K ) -> ( X e. ( 1 ..^ K ) -> ( ( F ` 0 ) =/= ( F ` K ) -> ( ( F ` X ) = ( F ` Y ) -> X = Y ) ) ) ) ) ) ) |
| 49 | 48 | com14 | |- ( X e. ( 0 ... K ) -> ( ( ( F " { 0 , K } ) i^i ( F " ( 1 ..^ K ) ) ) = (/) -> ( ( Y = 0 \/ Y = K ) -> ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( X e. ( 1 ..^ K ) -> ( ( F ` 0 ) =/= ( F ` K ) -> ( ( F ` X ) = ( F ` Y ) -> X = Y ) ) ) ) ) ) ) |
| 50 | 49 | com12 | |- ( ( ( F " { 0 , K } ) i^i ( F " ( 1 ..^ K ) ) ) = (/) -> ( X e. ( 0 ... K ) -> ( ( Y = 0 \/ Y = K ) -> ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( X e. ( 1 ..^ K ) -> ( ( F ` 0 ) =/= ( F ` K ) -> ( ( F ` X ) = ( F ` Y ) -> X = Y ) ) ) ) ) ) ) |
| 51 | 50 | com15 | |- ( X e. ( 1 ..^ K ) -> ( X e. ( 0 ... K ) -> ( ( Y = 0 \/ Y = K ) -> ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( ( ( F " { 0 , K } ) i^i ( F " ( 1 ..^ K ) ) ) = (/) -> ( ( F ` 0 ) =/= ( F ` K ) -> ( ( F ` X ) = ( F ` Y ) -> X = Y ) ) ) ) ) ) ) |
| 52 | elfznelfzo | |- ( ( X e. ( 0 ... K ) /\ -. X e. ( 1 ..^ K ) ) -> ( X = 0 \/ X = K ) ) |
|
| 53 | eqtr3 | |- ( ( X = 0 /\ Y = 0 ) -> X = Y ) |
|
| 54 | 2a1 | |- ( X = Y -> ( ( F ` 0 ) =/= ( F ` K ) -> ( ( F ` X ) = ( F ` Y ) -> X = Y ) ) ) |
|
| 55 | 54 | 2a1d | |- ( X = Y -> ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( ( ( F " { 0 , K } ) i^i ( F " ( 1 ..^ K ) ) ) = (/) -> ( ( F ` 0 ) =/= ( F ` K ) -> ( ( F ` X ) = ( F ` Y ) -> X = Y ) ) ) ) ) |
| 56 | 53 55 | syl | |- ( ( X = 0 /\ Y = 0 ) -> ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( ( ( F " { 0 , K } ) i^i ( F " ( 1 ..^ K ) ) ) = (/) -> ( ( F ` 0 ) =/= ( F ` K ) -> ( ( F ` X ) = ( F ` Y ) -> X = Y ) ) ) ) ) |
| 57 | 5 | adantl | |- ( ( X = K /\ Y = 0 ) -> ( F ` 0 ) = ( F ` Y ) ) |
| 58 | fveq2 | |- ( K = X -> ( F ` K ) = ( F ` X ) ) |
|
| 59 | 58 | eqcoms | |- ( X = K -> ( F ` K ) = ( F ` X ) ) |
| 60 | 59 | adantr | |- ( ( X = K /\ Y = 0 ) -> ( F ` K ) = ( F ` X ) ) |
| 61 | 57 60 | neeq12d | |- ( ( X = K /\ Y = 0 ) -> ( ( F ` 0 ) =/= ( F ` K ) <-> ( F ` Y ) =/= ( F ` X ) ) ) |
| 62 | df-ne | |- ( ( F ` Y ) =/= ( F ` X ) <-> -. ( F ` Y ) = ( F ` X ) ) |
|
| 63 | pm2.24 | |- ( ( F ` Y ) = ( F ` X ) -> ( -. ( F ` Y ) = ( F ` X ) -> X = Y ) ) |
|
| 64 | 63 | eqcoms | |- ( ( F ` X ) = ( F ` Y ) -> ( -. ( F ` Y ) = ( F ` X ) -> X = Y ) ) |
| 65 | 64 | com12 | |- ( -. ( F ` Y ) = ( F ` X ) -> ( ( F ` X ) = ( F ` Y ) -> X = Y ) ) |
| 66 | 62 65 | sylbi | |- ( ( F ` Y ) =/= ( F ` X ) -> ( ( F ` X ) = ( F ` Y ) -> X = Y ) ) |
| 67 | 61 66 | biimtrdi | |- ( ( X = K /\ Y = 0 ) -> ( ( F ` 0 ) =/= ( F ` K ) -> ( ( F ` X ) = ( F ` Y ) -> X = Y ) ) ) |
| 68 | 67 | 2a1d | |- ( ( X = K /\ Y = 0 ) -> ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( ( ( F " { 0 , K } ) i^i ( F " ( 1 ..^ K ) ) ) = (/) -> ( ( F ` 0 ) =/= ( F ` K ) -> ( ( F ` X ) = ( F ` Y ) -> X = Y ) ) ) ) ) |
| 69 | fveq2 | |- ( 0 = X -> ( F ` 0 ) = ( F ` X ) ) |
|
| 70 | 69 | eqcoms | |- ( X = 0 -> ( F ` 0 ) = ( F ` X ) ) |
| 71 | 70 | adantr | |- ( ( X = 0 /\ Y = K ) -> ( F ` 0 ) = ( F ` X ) ) |
| 72 | 38 | adantl | |- ( ( X = 0 /\ Y = K ) -> ( F ` K ) = ( F ` Y ) ) |
| 73 | 71 72 | neeq12d | |- ( ( X = 0 /\ Y = K ) -> ( ( F ` 0 ) =/= ( F ` K ) <-> ( F ` X ) =/= ( F ` Y ) ) ) |
| 74 | df-ne | |- ( ( F ` X ) =/= ( F ` Y ) <-> -. ( F ` X ) = ( F ` Y ) ) |
|
| 75 | 74 22 | sylbi | |- ( ( F ` X ) =/= ( F ` Y ) -> ( ( F ` X ) = ( F ` Y ) -> X = Y ) ) |
| 76 | 73 75 | biimtrdi | |- ( ( X = 0 /\ Y = K ) -> ( ( F ` 0 ) =/= ( F ` K ) -> ( ( F ` X ) = ( F ` Y ) -> X = Y ) ) ) |
| 77 | 76 | 2a1d | |- ( ( X = 0 /\ Y = K ) -> ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( ( ( F " { 0 , K } ) i^i ( F " ( 1 ..^ K ) ) ) = (/) -> ( ( F ` 0 ) =/= ( F ` K ) -> ( ( F ` X ) = ( F ` Y ) -> X = Y ) ) ) ) ) |
| 78 | eqtr3 | |- ( ( X = K /\ Y = K ) -> X = Y ) |
|
| 79 | 78 55 | syl | |- ( ( X = K /\ Y = K ) -> ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( ( ( F " { 0 , K } ) i^i ( F " ( 1 ..^ K ) ) ) = (/) -> ( ( F ` 0 ) =/= ( F ` K ) -> ( ( F ` X ) = ( F ` Y ) -> X = Y ) ) ) ) ) |
| 80 | 56 68 77 79 | ccase | |- ( ( ( X = 0 \/ X = K ) /\ ( Y = 0 \/ Y = K ) ) -> ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( ( ( F " { 0 , K } ) i^i ( F " ( 1 ..^ K ) ) ) = (/) -> ( ( F ` 0 ) =/= ( F ` K ) -> ( ( F ` X ) = ( F ` Y ) -> X = Y ) ) ) ) ) |
| 81 | 80 | ex | |- ( ( X = 0 \/ X = K ) -> ( ( Y = 0 \/ Y = K ) -> ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( ( ( F " { 0 , K } ) i^i ( F " ( 1 ..^ K ) ) ) = (/) -> ( ( F ` 0 ) =/= ( F ` K ) -> ( ( F ` X ) = ( F ` Y ) -> X = Y ) ) ) ) ) ) |
| 82 | 52 81 | syl | |- ( ( X e. ( 0 ... K ) /\ -. X e. ( 1 ..^ K ) ) -> ( ( Y = 0 \/ Y = K ) -> ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( ( ( F " { 0 , K } ) i^i ( F " ( 1 ..^ K ) ) ) = (/) -> ( ( F ` 0 ) =/= ( F ` K ) -> ( ( F ` X ) = ( F ` Y ) -> X = Y ) ) ) ) ) ) |
| 83 | 82 | expcom | |- ( -. X e. ( 1 ..^ K ) -> ( X e. ( 0 ... K ) -> ( ( Y = 0 \/ Y = K ) -> ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( ( ( F " { 0 , K } ) i^i ( F " ( 1 ..^ K ) ) ) = (/) -> ( ( F ` 0 ) =/= ( F ` K ) -> ( ( F ` X ) = ( F ` Y ) -> X = Y ) ) ) ) ) ) ) |
| 84 | 51 83 | pm2.61i | |- ( X e. ( 0 ... K ) -> ( ( Y = 0 \/ Y = K ) -> ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( ( ( F " { 0 , K } ) i^i ( F " ( 1 ..^ K ) ) ) = (/) -> ( ( F ` 0 ) =/= ( F ` K ) -> ( ( F ` X ) = ( F ` Y ) -> X = Y ) ) ) ) ) ) |
| 85 | 84 | com12 | |- ( ( Y = 0 \/ Y = K ) -> ( X e. ( 0 ... K ) -> ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( ( ( F " { 0 , K } ) i^i ( F " ( 1 ..^ K ) ) ) = (/) -> ( ( F ` 0 ) =/= ( F ` K ) -> ( ( F ` X ) = ( F ` Y ) -> X = Y ) ) ) ) ) ) |
| 86 | 1 85 | syl | |- ( ( Y e. ( 0 ... K ) /\ -. Y e. ( 1 ..^ K ) ) -> ( X e. ( 0 ... K ) -> ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( ( ( F " { 0 , K } ) i^i ( F " ( 1 ..^ K ) ) ) = (/) -> ( ( F ` 0 ) =/= ( F ` K ) -> ( ( F ` X ) = ( F ` Y ) -> X = Y ) ) ) ) ) ) |
| 87 | 86 | ex | |- ( Y e. ( 0 ... K ) -> ( -. Y e. ( 1 ..^ K ) -> ( X e. ( 0 ... K ) -> ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( ( ( F " { 0 , K } ) i^i ( F " ( 1 ..^ K ) ) ) = (/) -> ( ( F ` 0 ) =/= ( F ` K ) -> ( ( F ` X ) = ( F ` Y ) -> X = Y ) ) ) ) ) ) ) |
| 88 | 87 | com23 | |- ( Y e. ( 0 ... K ) -> ( X e. ( 0 ... K ) -> ( -. Y e. ( 1 ..^ K ) -> ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( ( ( F " { 0 , K } ) i^i ( F " ( 1 ..^ K ) ) ) = (/) -> ( ( F ` 0 ) =/= ( F ` K ) -> ( ( F ` X ) = ( F ` Y ) -> X = Y ) ) ) ) ) ) ) |
| 89 | 88 | impcom | |- ( ( X e. ( 0 ... K ) /\ Y e. ( 0 ... K ) ) -> ( -. Y e. ( 1 ..^ K ) -> ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( ( ( F " { 0 , K } ) i^i ( F " ( 1 ..^ K ) ) ) = (/) -> ( ( F ` 0 ) =/= ( F ` K ) -> ( ( F ` X ) = ( F ` Y ) -> X = Y ) ) ) ) ) ) |
| 90 | 89 | com12 | |- ( -. Y e. ( 1 ..^ K ) -> ( ( X e. ( 0 ... K ) /\ Y e. ( 0 ... K ) ) -> ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( ( ( F " { 0 , K } ) i^i ( F " ( 1 ..^ K ) ) ) = (/) -> ( ( F ` 0 ) =/= ( F ` K ) -> ( ( F ` X ) = ( F ` Y ) -> X = Y ) ) ) ) ) ) |
| 91 | 90 | com25 | |- ( -. Y e. ( 1 ..^ K ) -> ( ( F ` 0 ) =/= ( F ` K ) -> ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( ( ( F " { 0 , K } ) i^i ( F " ( 1 ..^ K ) ) ) = (/) -> ( ( X e. ( 0 ... K ) /\ Y e. ( 0 ... K ) ) -> ( ( F ` X ) = ( F ` Y ) -> X = Y ) ) ) ) ) ) |