This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for infxpenc2 . (Contributed by Mario Carneiro, 30-May-2015) (Revised by AV, 7-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | infxpenc2.1 | ⊢ ( 𝜑 → 𝐴 ∈ On ) | |
| infxpenc2.2 | ⊢ ( 𝜑 → ∀ 𝑏 ∈ 𝐴 ( ω ⊆ 𝑏 → ∃ 𝑤 ∈ ( On ∖ 1o ) ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑤 ) ) ) | ||
| infxpenc2.3 | ⊢ 𝑊 = ( ◡ ( 𝑥 ∈ ( On ∖ 1o ) ↦ ( ω ↑o 𝑥 ) ) ‘ ran ( 𝑛 ‘ 𝑏 ) ) | ||
| infxpenc2.4 | ⊢ ( 𝜑 → 𝐹 : ( ω ↑o 2o ) –1-1-onto→ ω ) | ||
| infxpenc2.5 | ⊢ ( 𝜑 → ( 𝐹 ‘ ∅ ) = ∅ ) | ||
| Assertion | infxpenc2lem3 | ⊢ ( 𝜑 → ∃ 𝑔 ∀ 𝑏 ∈ 𝐴 ( ω ⊆ 𝑏 → ( 𝑔 ‘ 𝑏 ) : ( 𝑏 × 𝑏 ) –1-1-onto→ 𝑏 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | infxpenc2.1 | ⊢ ( 𝜑 → 𝐴 ∈ On ) | |
| 2 | infxpenc2.2 | ⊢ ( 𝜑 → ∀ 𝑏 ∈ 𝐴 ( ω ⊆ 𝑏 → ∃ 𝑤 ∈ ( On ∖ 1o ) ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑤 ) ) ) | |
| 3 | infxpenc2.3 | ⊢ 𝑊 = ( ◡ ( 𝑥 ∈ ( On ∖ 1o ) ↦ ( ω ↑o 𝑥 ) ) ‘ ran ( 𝑛 ‘ 𝑏 ) ) | |
| 4 | infxpenc2.4 | ⊢ ( 𝜑 → 𝐹 : ( ω ↑o 2o ) –1-1-onto→ ω ) | |
| 5 | infxpenc2.5 | ⊢ ( 𝜑 → ( 𝐹 ‘ ∅ ) = ∅ ) | |
| 6 | eqid | ⊢ ( 𝑦 ∈ { 𝑥 ∈ ( ( ω ↑o 2o ) ↑m 𝑊 ) ∣ 𝑥 finSupp ∅ } ↦ ( 𝐹 ∘ ( 𝑦 ∘ ◡ ( I ↾ 𝑊 ) ) ) ) = ( 𝑦 ∈ { 𝑥 ∈ ( ( ω ↑o 2o ) ↑m 𝑊 ) ∣ 𝑥 finSupp ∅ } ↦ ( 𝐹 ∘ ( 𝑦 ∘ ◡ ( I ↾ 𝑊 ) ) ) ) | |
| 7 | eqid | ⊢ ( ( ( ω CNF 𝑊 ) ∘ ( 𝑦 ∈ { 𝑥 ∈ ( ( ω ↑o 2o ) ↑m 𝑊 ) ∣ 𝑥 finSupp ∅ } ↦ ( 𝐹 ∘ ( 𝑦 ∘ ◡ ( I ↾ 𝑊 ) ) ) ) ) ∘ ◡ ( ( ω ↑o 2o ) CNF 𝑊 ) ) = ( ( ( ω CNF 𝑊 ) ∘ ( 𝑦 ∈ { 𝑥 ∈ ( ( ω ↑o 2o ) ↑m 𝑊 ) ∣ 𝑥 finSupp ∅ } ↦ ( 𝐹 ∘ ( 𝑦 ∘ ◡ ( I ↾ 𝑊 ) ) ) ) ) ∘ ◡ ( ( ω ↑o 2o ) CNF 𝑊 ) ) | |
| 8 | eqid | ⊢ ( 𝑦 ∈ { 𝑥 ∈ ( ω ↑m ( 𝑊 ·o 2o ) ) ∣ 𝑥 finSupp ∅ } ↦ ( ( I ↾ ω ) ∘ ( 𝑦 ∘ ◡ ( ( 𝑧 ∈ 2o , 𝑤 ∈ 𝑊 ↦ ( ( 2o ·o 𝑤 ) +o 𝑧 ) ) ∘ ◡ ( 𝑧 ∈ 2o , 𝑤 ∈ 𝑊 ↦ ( ( 𝑊 ·o 𝑧 ) +o 𝑤 ) ) ) ) ) ) = ( 𝑦 ∈ { 𝑥 ∈ ( ω ↑m ( 𝑊 ·o 2o ) ) ∣ 𝑥 finSupp ∅ } ↦ ( ( I ↾ ω ) ∘ ( 𝑦 ∘ ◡ ( ( 𝑧 ∈ 2o , 𝑤 ∈ 𝑊 ↦ ( ( 2o ·o 𝑤 ) +o 𝑧 ) ) ∘ ◡ ( 𝑧 ∈ 2o , 𝑤 ∈ 𝑊 ↦ ( ( 𝑊 ·o 𝑧 ) +o 𝑤 ) ) ) ) ) ) | |
| 9 | eqid | ⊢ ( 𝑧 ∈ 2o , 𝑤 ∈ 𝑊 ↦ ( ( 𝑊 ·o 𝑧 ) +o 𝑤 ) ) = ( 𝑧 ∈ 2o , 𝑤 ∈ 𝑊 ↦ ( ( 𝑊 ·o 𝑧 ) +o 𝑤 ) ) | |
| 10 | eqid | ⊢ ( 𝑧 ∈ 2o , 𝑤 ∈ 𝑊 ↦ ( ( 2o ·o 𝑤 ) +o 𝑧 ) ) = ( 𝑧 ∈ 2o , 𝑤 ∈ 𝑊 ↦ ( ( 2o ·o 𝑤 ) +o 𝑧 ) ) | |
| 11 | eqid | ⊢ ( ( ( ω CNF ( 2o ·o 𝑊 ) ) ∘ ( 𝑦 ∈ { 𝑥 ∈ ( ω ↑m ( 𝑊 ·o 2o ) ) ∣ 𝑥 finSupp ∅ } ↦ ( ( I ↾ ω ) ∘ ( 𝑦 ∘ ◡ ( ( 𝑧 ∈ 2o , 𝑤 ∈ 𝑊 ↦ ( ( 2o ·o 𝑤 ) +o 𝑧 ) ) ∘ ◡ ( 𝑧 ∈ 2o , 𝑤 ∈ 𝑊 ↦ ( ( 𝑊 ·o 𝑧 ) +o 𝑤 ) ) ) ) ) ) ) ∘ ◡ ( ω CNF ( 𝑊 ·o 2o ) ) ) = ( ( ( ω CNF ( 2o ·o 𝑊 ) ) ∘ ( 𝑦 ∈ { 𝑥 ∈ ( ω ↑m ( 𝑊 ·o 2o ) ) ∣ 𝑥 finSupp ∅ } ↦ ( ( I ↾ ω ) ∘ ( 𝑦 ∘ ◡ ( ( 𝑧 ∈ 2o , 𝑤 ∈ 𝑊 ↦ ( ( 2o ·o 𝑤 ) +o 𝑧 ) ) ∘ ◡ ( 𝑧 ∈ 2o , 𝑤 ∈ 𝑊 ↦ ( ( 𝑊 ·o 𝑧 ) +o 𝑤 ) ) ) ) ) ) ) ∘ ◡ ( ω CNF ( 𝑊 ·o 2o ) ) ) | |
| 12 | eqid | ⊢ ( 𝑥 ∈ ( ω ↑o 𝑊 ) , 𝑦 ∈ ( ω ↑o 𝑊 ) ↦ ( ( ( ω ↑o 𝑊 ) ·o 𝑥 ) +o 𝑦 ) ) = ( 𝑥 ∈ ( ω ↑o 𝑊 ) , 𝑦 ∈ ( ω ↑o 𝑊 ) ↦ ( ( ( ω ↑o 𝑊 ) ·o 𝑥 ) +o 𝑦 ) ) | |
| 13 | eqid | ⊢ ( 𝑥 ∈ 𝑏 , 𝑦 ∈ 𝑏 ↦ 〈 ( ( 𝑛 ‘ 𝑏 ) ‘ 𝑥 ) , ( ( 𝑛 ‘ 𝑏 ) ‘ 𝑦 ) 〉 ) = ( 𝑥 ∈ 𝑏 , 𝑦 ∈ 𝑏 ↦ 〈 ( ( 𝑛 ‘ 𝑏 ) ‘ 𝑥 ) , ( ( 𝑛 ‘ 𝑏 ) ‘ 𝑦 ) 〉 ) | |
| 14 | eqid | ⊢ ( ◡ ( 𝑛 ‘ 𝑏 ) ∘ ( ( ( ( ( ( ω CNF 𝑊 ) ∘ ( 𝑦 ∈ { 𝑥 ∈ ( ( ω ↑o 2o ) ↑m 𝑊 ) ∣ 𝑥 finSupp ∅ } ↦ ( 𝐹 ∘ ( 𝑦 ∘ ◡ ( I ↾ 𝑊 ) ) ) ) ) ∘ ◡ ( ( ω ↑o 2o ) CNF 𝑊 ) ) ∘ ( ( ( ω CNF ( 2o ·o 𝑊 ) ) ∘ ( 𝑦 ∈ { 𝑥 ∈ ( ω ↑m ( 𝑊 ·o 2o ) ) ∣ 𝑥 finSupp ∅ } ↦ ( ( I ↾ ω ) ∘ ( 𝑦 ∘ ◡ ( ( 𝑧 ∈ 2o , 𝑤 ∈ 𝑊 ↦ ( ( 2o ·o 𝑤 ) +o 𝑧 ) ) ∘ ◡ ( 𝑧 ∈ 2o , 𝑤 ∈ 𝑊 ↦ ( ( 𝑊 ·o 𝑧 ) +o 𝑤 ) ) ) ) ) ) ) ∘ ◡ ( ω CNF ( 𝑊 ·o 2o ) ) ) ) ∘ ( 𝑥 ∈ ( ω ↑o 𝑊 ) , 𝑦 ∈ ( ω ↑o 𝑊 ) ↦ ( ( ( ω ↑o 𝑊 ) ·o 𝑥 ) +o 𝑦 ) ) ) ∘ ( 𝑥 ∈ 𝑏 , 𝑦 ∈ 𝑏 ↦ 〈 ( ( 𝑛 ‘ 𝑏 ) ‘ 𝑥 ) , ( ( 𝑛 ‘ 𝑏 ) ‘ 𝑦 ) 〉 ) ) ) = ( ◡ ( 𝑛 ‘ 𝑏 ) ∘ ( ( ( ( ( ( ω CNF 𝑊 ) ∘ ( 𝑦 ∈ { 𝑥 ∈ ( ( ω ↑o 2o ) ↑m 𝑊 ) ∣ 𝑥 finSupp ∅ } ↦ ( 𝐹 ∘ ( 𝑦 ∘ ◡ ( I ↾ 𝑊 ) ) ) ) ) ∘ ◡ ( ( ω ↑o 2o ) CNF 𝑊 ) ) ∘ ( ( ( ω CNF ( 2o ·o 𝑊 ) ) ∘ ( 𝑦 ∈ { 𝑥 ∈ ( ω ↑m ( 𝑊 ·o 2o ) ) ∣ 𝑥 finSupp ∅ } ↦ ( ( I ↾ ω ) ∘ ( 𝑦 ∘ ◡ ( ( 𝑧 ∈ 2o , 𝑤 ∈ 𝑊 ↦ ( ( 2o ·o 𝑤 ) +o 𝑧 ) ) ∘ ◡ ( 𝑧 ∈ 2o , 𝑤 ∈ 𝑊 ↦ ( ( 𝑊 ·o 𝑧 ) +o 𝑤 ) ) ) ) ) ) ) ∘ ◡ ( ω CNF ( 𝑊 ·o 2o ) ) ) ) ∘ ( 𝑥 ∈ ( ω ↑o 𝑊 ) , 𝑦 ∈ ( ω ↑o 𝑊 ) ↦ ( ( ( ω ↑o 𝑊 ) ·o 𝑥 ) +o 𝑦 ) ) ) ∘ ( 𝑥 ∈ 𝑏 , 𝑦 ∈ 𝑏 ↦ 〈 ( ( 𝑛 ‘ 𝑏 ) ‘ 𝑥 ) , ( ( 𝑛 ‘ 𝑏 ) ‘ 𝑦 ) 〉 ) ) ) | |
| 15 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 | infxpenc2lem2 | ⊢ ( 𝜑 → ∃ 𝑔 ∀ 𝑏 ∈ 𝐴 ( ω ⊆ 𝑏 → ( 𝑔 ‘ 𝑏 ) : ( 𝑏 × 𝑏 ) –1-1-onto→ 𝑏 ) ) |