This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Half of infeq5 . (Contributed by Mario Carneiro, 16-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | infeq5i | ⊢ ( ω ∈ V → ∃ 𝑥 𝑥 ⊊ ∪ 𝑥 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difexg | ⊢ ( ω ∈ V → ( ω ∖ { ∅ } ) ∈ V ) | |
| 2 | 0ex | ⊢ ∅ ∈ V | |
| 3 | 2 | snid | ⊢ ∅ ∈ { ∅ } |
| 4 | disj4 | ⊢ ( ( ω ∩ { ∅ } ) = ∅ ↔ ¬ ( ω ∖ { ∅ } ) ⊊ ω ) | |
| 5 | disj3 | ⊢ ( ( ω ∩ { ∅ } ) = ∅ ↔ ω = ( ω ∖ { ∅ } ) ) | |
| 6 | 4 5 | bitr3i | ⊢ ( ¬ ( ω ∖ { ∅ } ) ⊊ ω ↔ ω = ( ω ∖ { ∅ } ) ) |
| 7 | peano1 | ⊢ ∅ ∈ ω | |
| 8 | eleq2 | ⊢ ( ω = ( ω ∖ { ∅ } ) → ( ∅ ∈ ω ↔ ∅ ∈ ( ω ∖ { ∅ } ) ) ) | |
| 9 | 7 8 | mpbii | ⊢ ( ω = ( ω ∖ { ∅ } ) → ∅ ∈ ( ω ∖ { ∅ } ) ) |
| 10 | 9 | eldifbd | ⊢ ( ω = ( ω ∖ { ∅ } ) → ¬ ∅ ∈ { ∅ } ) |
| 11 | 6 10 | sylbi | ⊢ ( ¬ ( ω ∖ { ∅ } ) ⊊ ω → ¬ ∅ ∈ { ∅ } ) |
| 12 | 3 11 | mt4 | ⊢ ( ω ∖ { ∅ } ) ⊊ ω |
| 13 | unidif0 | ⊢ ∪ ( ω ∖ { ∅ } ) = ∪ ω | |
| 14 | limom | ⊢ Lim ω | |
| 15 | limuni | ⊢ ( Lim ω → ω = ∪ ω ) | |
| 16 | 14 15 | ax-mp | ⊢ ω = ∪ ω |
| 17 | 13 16 | eqtr4i | ⊢ ∪ ( ω ∖ { ∅ } ) = ω |
| 18 | 17 | psseq2i | ⊢ ( ( ω ∖ { ∅ } ) ⊊ ∪ ( ω ∖ { ∅ } ) ↔ ( ω ∖ { ∅ } ) ⊊ ω ) |
| 19 | 12 18 | mpbir | ⊢ ( ω ∖ { ∅ } ) ⊊ ∪ ( ω ∖ { ∅ } ) |
| 20 | psseq1 | ⊢ ( 𝑥 = ( ω ∖ { ∅ } ) → ( 𝑥 ⊊ ∪ 𝑥 ↔ ( ω ∖ { ∅ } ) ⊊ ∪ 𝑥 ) ) | |
| 21 | unieq | ⊢ ( 𝑥 = ( ω ∖ { ∅ } ) → ∪ 𝑥 = ∪ ( ω ∖ { ∅ } ) ) | |
| 22 | 21 | psseq2d | ⊢ ( 𝑥 = ( ω ∖ { ∅ } ) → ( ( ω ∖ { ∅ } ) ⊊ ∪ 𝑥 ↔ ( ω ∖ { ∅ } ) ⊊ ∪ ( ω ∖ { ∅ } ) ) ) |
| 23 | 20 22 | bitrd | ⊢ ( 𝑥 = ( ω ∖ { ∅ } ) → ( 𝑥 ⊊ ∪ 𝑥 ↔ ( ω ∖ { ∅ } ) ⊊ ∪ ( ω ∖ { ∅ } ) ) ) |
| 24 | 23 | spcegv | ⊢ ( ( ω ∖ { ∅ } ) ∈ V → ( ( ω ∖ { ∅ } ) ⊊ ∪ ( ω ∖ { ∅ } ) → ∃ 𝑥 𝑥 ⊊ ∪ 𝑥 ) ) |
| 25 | 1 19 24 | mpisyl | ⊢ ( ω ∈ V → ∃ 𝑥 𝑥 ⊊ ∪ 𝑥 ) |