This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Half of infeq5 . (Contributed by Mario Carneiro, 16-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | infeq5i | |- ( _om e. _V -> E. x x C. U. x ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difexg | |- ( _om e. _V -> ( _om \ { (/) } ) e. _V ) |
|
| 2 | 0ex | |- (/) e. _V |
|
| 3 | 2 | snid | |- (/) e. { (/) } |
| 4 | disj4 | |- ( ( _om i^i { (/) } ) = (/) <-> -. ( _om \ { (/) } ) C. _om ) |
|
| 5 | disj3 | |- ( ( _om i^i { (/) } ) = (/) <-> _om = ( _om \ { (/) } ) ) |
|
| 6 | 4 5 | bitr3i | |- ( -. ( _om \ { (/) } ) C. _om <-> _om = ( _om \ { (/) } ) ) |
| 7 | peano1 | |- (/) e. _om |
|
| 8 | eleq2 | |- ( _om = ( _om \ { (/) } ) -> ( (/) e. _om <-> (/) e. ( _om \ { (/) } ) ) ) |
|
| 9 | 7 8 | mpbii | |- ( _om = ( _om \ { (/) } ) -> (/) e. ( _om \ { (/) } ) ) |
| 10 | 9 | eldifbd | |- ( _om = ( _om \ { (/) } ) -> -. (/) e. { (/) } ) |
| 11 | 6 10 | sylbi | |- ( -. ( _om \ { (/) } ) C. _om -> -. (/) e. { (/) } ) |
| 12 | 3 11 | mt4 | |- ( _om \ { (/) } ) C. _om |
| 13 | unidif0 | |- U. ( _om \ { (/) } ) = U. _om |
|
| 14 | limom | |- Lim _om |
|
| 15 | limuni | |- ( Lim _om -> _om = U. _om ) |
|
| 16 | 14 15 | ax-mp | |- _om = U. _om |
| 17 | 13 16 | eqtr4i | |- U. ( _om \ { (/) } ) = _om |
| 18 | 17 | psseq2i | |- ( ( _om \ { (/) } ) C. U. ( _om \ { (/) } ) <-> ( _om \ { (/) } ) C. _om ) |
| 19 | 12 18 | mpbir | |- ( _om \ { (/) } ) C. U. ( _om \ { (/) } ) |
| 20 | psseq1 | |- ( x = ( _om \ { (/) } ) -> ( x C. U. x <-> ( _om \ { (/) } ) C. U. x ) ) |
|
| 21 | unieq | |- ( x = ( _om \ { (/) } ) -> U. x = U. ( _om \ { (/) } ) ) |
|
| 22 | 21 | psseq2d | |- ( x = ( _om \ { (/) } ) -> ( ( _om \ { (/) } ) C. U. x <-> ( _om \ { (/) } ) C. U. ( _om \ { (/) } ) ) ) |
| 23 | 20 22 | bitrd | |- ( x = ( _om \ { (/) } ) -> ( x C. U. x <-> ( _om \ { (/) } ) C. U. ( _om \ { (/) } ) ) ) |
| 24 | 23 | spcegv | |- ( ( _om \ { (/) } ) e. _V -> ( ( _om \ { (/) } ) C. U. ( _om \ { (/) } ) -> E. x x C. U. x ) ) |
| 25 | 1 19 24 | mpisyl | |- ( _om e. _V -> E. x x C. U. x ) |