This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The statement "there exists a set that is a proper subset of its union" is equivalent to the Axiom of Infinity (shown on the right-hand side in the form of omex .) The left-hand side provides us with a very short way to express the Axiom of Infinity using only elementary symbols. This proof of equivalence does not depend on the Axiom of Infinity. (Contributed by NM, 23-Mar-2004) (Revised by Mario Carneiro, 16-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | infeq5 | ⊢ ( ∃ 𝑥 𝑥 ⊊ ∪ 𝑥 ↔ ω ∈ V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pss | ⊢ ( 𝑥 ⊊ ∪ 𝑥 ↔ ( 𝑥 ⊆ ∪ 𝑥 ∧ 𝑥 ≠ ∪ 𝑥 ) ) | |
| 2 | unieq | ⊢ ( 𝑥 = ∅ → ∪ 𝑥 = ∪ ∅ ) | |
| 3 | uni0 | ⊢ ∪ ∅ = ∅ | |
| 4 | 2 3 | eqtr2di | ⊢ ( 𝑥 = ∅ → ∅ = ∪ 𝑥 ) |
| 5 | eqtr | ⊢ ( ( 𝑥 = ∅ ∧ ∅ = ∪ 𝑥 ) → 𝑥 = ∪ 𝑥 ) | |
| 6 | 4 5 | mpdan | ⊢ ( 𝑥 = ∅ → 𝑥 = ∪ 𝑥 ) |
| 7 | 6 | necon3i | ⊢ ( 𝑥 ≠ ∪ 𝑥 → 𝑥 ≠ ∅ ) |
| 8 | 7 | anim1i | ⊢ ( ( 𝑥 ≠ ∪ 𝑥 ∧ 𝑥 ⊆ ∪ 𝑥 ) → ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) ) |
| 9 | 8 | ancoms | ⊢ ( ( 𝑥 ⊆ ∪ 𝑥 ∧ 𝑥 ≠ ∪ 𝑥 ) → ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) ) |
| 10 | 1 9 | sylbi | ⊢ ( 𝑥 ⊊ ∪ 𝑥 → ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) ) |
| 11 | 10 | eximi | ⊢ ( ∃ 𝑥 𝑥 ⊊ ∪ 𝑥 → ∃ 𝑥 ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) ) |
| 12 | eqid | ⊢ ( 𝑦 ∈ V ↦ { 𝑤 ∈ 𝑥 ∣ ( 𝑤 ∩ 𝑥 ) ⊆ 𝑦 } ) = ( 𝑦 ∈ V ↦ { 𝑤 ∈ 𝑥 ∣ ( 𝑤 ∩ 𝑥 ) ⊆ 𝑦 } ) | |
| 13 | eqid | ⊢ ( rec ( ( 𝑦 ∈ V ↦ { 𝑤 ∈ 𝑥 ∣ ( 𝑤 ∩ 𝑥 ) ⊆ 𝑦 } ) , ∅ ) ↾ ω ) = ( rec ( ( 𝑦 ∈ V ↦ { 𝑤 ∈ 𝑥 ∣ ( 𝑤 ∩ 𝑥 ) ⊆ 𝑦 } ) , ∅ ) ↾ ω ) | |
| 14 | vex | ⊢ 𝑥 ∈ V | |
| 15 | 12 13 14 14 | inf3lem7 | ⊢ ( ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) → ω ∈ V ) |
| 16 | 15 | exlimiv | ⊢ ( ∃ 𝑥 ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) → ω ∈ V ) |
| 17 | 11 16 | syl | ⊢ ( ∃ 𝑥 𝑥 ⊊ ∪ 𝑥 → ω ∈ V ) |
| 18 | infeq5i | ⊢ ( ω ∈ V → ∃ 𝑥 𝑥 ⊊ ∪ 𝑥 ) | |
| 19 | 17 18 | impbii | ⊢ ( ∃ 𝑥 𝑥 ⊊ ∪ 𝑥 ↔ ω ∈ V ) |