This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 for detailed description. (Contributed by NM, 28-Oct-1996)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | inf3lem.1 | ⊢ 𝐺 = ( 𝑦 ∈ V ↦ { 𝑤 ∈ 𝑥 ∣ ( 𝑤 ∩ 𝑥 ) ⊆ 𝑦 } ) | |
| inf3lem.2 | ⊢ 𝐹 = ( rec ( 𝐺 , ∅ ) ↾ ω ) | ||
| inf3lem.3 | ⊢ 𝐴 ∈ V | ||
| inf3lem.4 | ⊢ 𝐵 ∈ V | ||
| Assertion | inf3lem1 | ⊢ ( 𝐴 ∈ ω → ( 𝐹 ‘ 𝐴 ) ⊆ ( 𝐹 ‘ suc 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inf3lem.1 | ⊢ 𝐺 = ( 𝑦 ∈ V ↦ { 𝑤 ∈ 𝑥 ∣ ( 𝑤 ∩ 𝑥 ) ⊆ 𝑦 } ) | |
| 2 | inf3lem.2 | ⊢ 𝐹 = ( rec ( 𝐺 , ∅ ) ↾ ω ) | |
| 3 | inf3lem.3 | ⊢ 𝐴 ∈ V | |
| 4 | inf3lem.4 | ⊢ 𝐵 ∈ V | |
| 5 | fveq2 | ⊢ ( 𝑣 = ∅ → ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ ∅ ) ) | |
| 6 | suceq | ⊢ ( 𝑣 = ∅ → suc 𝑣 = suc ∅ ) | |
| 7 | 6 | fveq2d | ⊢ ( 𝑣 = ∅ → ( 𝐹 ‘ suc 𝑣 ) = ( 𝐹 ‘ suc ∅ ) ) |
| 8 | 5 7 | sseq12d | ⊢ ( 𝑣 = ∅ → ( ( 𝐹 ‘ 𝑣 ) ⊆ ( 𝐹 ‘ suc 𝑣 ) ↔ ( 𝐹 ‘ ∅ ) ⊆ ( 𝐹 ‘ suc ∅ ) ) ) |
| 9 | fveq2 | ⊢ ( 𝑣 = 𝑢 → ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝑢 ) ) | |
| 10 | suceq | ⊢ ( 𝑣 = 𝑢 → suc 𝑣 = suc 𝑢 ) | |
| 11 | 10 | fveq2d | ⊢ ( 𝑣 = 𝑢 → ( 𝐹 ‘ suc 𝑣 ) = ( 𝐹 ‘ suc 𝑢 ) ) |
| 12 | 9 11 | sseq12d | ⊢ ( 𝑣 = 𝑢 → ( ( 𝐹 ‘ 𝑣 ) ⊆ ( 𝐹 ‘ suc 𝑣 ) ↔ ( 𝐹 ‘ 𝑢 ) ⊆ ( 𝐹 ‘ suc 𝑢 ) ) ) |
| 13 | fveq2 | ⊢ ( 𝑣 = suc 𝑢 → ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ suc 𝑢 ) ) | |
| 14 | suceq | ⊢ ( 𝑣 = suc 𝑢 → suc 𝑣 = suc suc 𝑢 ) | |
| 15 | 14 | fveq2d | ⊢ ( 𝑣 = suc 𝑢 → ( 𝐹 ‘ suc 𝑣 ) = ( 𝐹 ‘ suc suc 𝑢 ) ) |
| 16 | 13 15 | sseq12d | ⊢ ( 𝑣 = suc 𝑢 → ( ( 𝐹 ‘ 𝑣 ) ⊆ ( 𝐹 ‘ suc 𝑣 ) ↔ ( 𝐹 ‘ suc 𝑢 ) ⊆ ( 𝐹 ‘ suc suc 𝑢 ) ) ) |
| 17 | fveq2 | ⊢ ( 𝑣 = 𝐴 → ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝐴 ) ) | |
| 18 | suceq | ⊢ ( 𝑣 = 𝐴 → suc 𝑣 = suc 𝐴 ) | |
| 19 | 18 | fveq2d | ⊢ ( 𝑣 = 𝐴 → ( 𝐹 ‘ suc 𝑣 ) = ( 𝐹 ‘ suc 𝐴 ) ) |
| 20 | 17 19 | sseq12d | ⊢ ( 𝑣 = 𝐴 → ( ( 𝐹 ‘ 𝑣 ) ⊆ ( 𝐹 ‘ suc 𝑣 ) ↔ ( 𝐹 ‘ 𝐴 ) ⊆ ( 𝐹 ‘ suc 𝐴 ) ) ) |
| 21 | 1 2 3 3 | inf3lemb | ⊢ ( 𝐹 ‘ ∅ ) = ∅ |
| 22 | 0ss | ⊢ ∅ ⊆ ( 𝐹 ‘ suc ∅ ) | |
| 23 | 21 22 | eqsstri | ⊢ ( 𝐹 ‘ ∅ ) ⊆ ( 𝐹 ‘ suc ∅ ) |
| 24 | sstr2 | ⊢ ( ( 𝑣 ∩ 𝑥 ) ⊆ ( 𝐹 ‘ 𝑢 ) → ( ( 𝐹 ‘ 𝑢 ) ⊆ ( 𝐹 ‘ suc 𝑢 ) → ( 𝑣 ∩ 𝑥 ) ⊆ ( 𝐹 ‘ suc 𝑢 ) ) ) | |
| 25 | 24 | com12 | ⊢ ( ( 𝐹 ‘ 𝑢 ) ⊆ ( 𝐹 ‘ suc 𝑢 ) → ( ( 𝑣 ∩ 𝑥 ) ⊆ ( 𝐹 ‘ 𝑢 ) → ( 𝑣 ∩ 𝑥 ) ⊆ ( 𝐹 ‘ suc 𝑢 ) ) ) |
| 26 | 25 | anim2d | ⊢ ( ( 𝐹 ‘ 𝑢 ) ⊆ ( 𝐹 ‘ suc 𝑢 ) → ( ( 𝑣 ∈ 𝑥 ∧ ( 𝑣 ∩ 𝑥 ) ⊆ ( 𝐹 ‘ 𝑢 ) ) → ( 𝑣 ∈ 𝑥 ∧ ( 𝑣 ∩ 𝑥 ) ⊆ ( 𝐹 ‘ suc 𝑢 ) ) ) ) |
| 27 | vex | ⊢ 𝑢 ∈ V | |
| 28 | 1 2 27 3 | inf3lemc | ⊢ ( 𝑢 ∈ ω → ( 𝐹 ‘ suc 𝑢 ) = ( 𝐺 ‘ ( 𝐹 ‘ 𝑢 ) ) ) |
| 29 | 28 | eleq2d | ⊢ ( 𝑢 ∈ ω → ( 𝑣 ∈ ( 𝐹 ‘ suc 𝑢 ) ↔ 𝑣 ∈ ( 𝐺 ‘ ( 𝐹 ‘ 𝑢 ) ) ) ) |
| 30 | vex | ⊢ 𝑣 ∈ V | |
| 31 | fvex | ⊢ ( 𝐹 ‘ 𝑢 ) ∈ V | |
| 32 | 1 2 30 31 | inf3lema | ⊢ ( 𝑣 ∈ ( 𝐺 ‘ ( 𝐹 ‘ 𝑢 ) ) ↔ ( 𝑣 ∈ 𝑥 ∧ ( 𝑣 ∩ 𝑥 ) ⊆ ( 𝐹 ‘ 𝑢 ) ) ) |
| 33 | 29 32 | bitrdi | ⊢ ( 𝑢 ∈ ω → ( 𝑣 ∈ ( 𝐹 ‘ suc 𝑢 ) ↔ ( 𝑣 ∈ 𝑥 ∧ ( 𝑣 ∩ 𝑥 ) ⊆ ( 𝐹 ‘ 𝑢 ) ) ) ) |
| 34 | peano2b | ⊢ ( 𝑢 ∈ ω ↔ suc 𝑢 ∈ ω ) | |
| 35 | 27 | sucex | ⊢ suc 𝑢 ∈ V |
| 36 | 1 2 35 3 | inf3lemc | ⊢ ( suc 𝑢 ∈ ω → ( 𝐹 ‘ suc suc 𝑢 ) = ( 𝐺 ‘ ( 𝐹 ‘ suc 𝑢 ) ) ) |
| 37 | 34 36 | sylbi | ⊢ ( 𝑢 ∈ ω → ( 𝐹 ‘ suc suc 𝑢 ) = ( 𝐺 ‘ ( 𝐹 ‘ suc 𝑢 ) ) ) |
| 38 | 37 | eleq2d | ⊢ ( 𝑢 ∈ ω → ( 𝑣 ∈ ( 𝐹 ‘ suc suc 𝑢 ) ↔ 𝑣 ∈ ( 𝐺 ‘ ( 𝐹 ‘ suc 𝑢 ) ) ) ) |
| 39 | fvex | ⊢ ( 𝐹 ‘ suc 𝑢 ) ∈ V | |
| 40 | 1 2 30 39 | inf3lema | ⊢ ( 𝑣 ∈ ( 𝐺 ‘ ( 𝐹 ‘ suc 𝑢 ) ) ↔ ( 𝑣 ∈ 𝑥 ∧ ( 𝑣 ∩ 𝑥 ) ⊆ ( 𝐹 ‘ suc 𝑢 ) ) ) |
| 41 | 38 40 | bitrdi | ⊢ ( 𝑢 ∈ ω → ( 𝑣 ∈ ( 𝐹 ‘ suc suc 𝑢 ) ↔ ( 𝑣 ∈ 𝑥 ∧ ( 𝑣 ∩ 𝑥 ) ⊆ ( 𝐹 ‘ suc 𝑢 ) ) ) ) |
| 42 | 33 41 | imbi12d | ⊢ ( 𝑢 ∈ ω → ( ( 𝑣 ∈ ( 𝐹 ‘ suc 𝑢 ) → 𝑣 ∈ ( 𝐹 ‘ suc suc 𝑢 ) ) ↔ ( ( 𝑣 ∈ 𝑥 ∧ ( 𝑣 ∩ 𝑥 ) ⊆ ( 𝐹 ‘ 𝑢 ) ) → ( 𝑣 ∈ 𝑥 ∧ ( 𝑣 ∩ 𝑥 ) ⊆ ( 𝐹 ‘ suc 𝑢 ) ) ) ) ) |
| 43 | 26 42 | imbitrrid | ⊢ ( 𝑢 ∈ ω → ( ( 𝐹 ‘ 𝑢 ) ⊆ ( 𝐹 ‘ suc 𝑢 ) → ( 𝑣 ∈ ( 𝐹 ‘ suc 𝑢 ) → 𝑣 ∈ ( 𝐹 ‘ suc suc 𝑢 ) ) ) ) |
| 44 | 43 | imp | ⊢ ( ( 𝑢 ∈ ω ∧ ( 𝐹 ‘ 𝑢 ) ⊆ ( 𝐹 ‘ suc 𝑢 ) ) → ( 𝑣 ∈ ( 𝐹 ‘ suc 𝑢 ) → 𝑣 ∈ ( 𝐹 ‘ suc suc 𝑢 ) ) ) |
| 45 | 44 | ssrdv | ⊢ ( ( 𝑢 ∈ ω ∧ ( 𝐹 ‘ 𝑢 ) ⊆ ( 𝐹 ‘ suc 𝑢 ) ) → ( 𝐹 ‘ suc 𝑢 ) ⊆ ( 𝐹 ‘ suc suc 𝑢 ) ) |
| 46 | 45 | ex | ⊢ ( 𝑢 ∈ ω → ( ( 𝐹 ‘ 𝑢 ) ⊆ ( 𝐹 ‘ suc 𝑢 ) → ( 𝐹 ‘ suc 𝑢 ) ⊆ ( 𝐹 ‘ suc suc 𝑢 ) ) ) |
| 47 | 8 12 16 20 23 46 | finds | ⊢ ( 𝐴 ∈ ω → ( 𝐹 ‘ 𝐴 ) ⊆ ( 𝐹 ‘ suc 𝐴 ) ) |