This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If for every element of a finite indexing set A there exists a corresponding element of another set B , then there exists a finite subset of B consisting only of those elements which are indexed by A . Proven without the Axiom of Choice, unlike indexdom . (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Mario Carneiro, 12-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | indexfi | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ 𝑀 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ) → ∃ 𝑐 ∈ Fin ( 𝑐 ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑐 𝜑 ∧ ∀ 𝑦 ∈ 𝑐 ∃ 𝑥 ∈ 𝐴 𝜑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv | ⊢ Ⅎ 𝑧 𝜑 | |
| 2 | nfsbc1v | ⊢ Ⅎ 𝑦 [ 𝑧 / 𝑦 ] 𝜑 | |
| 3 | sbceq1a | ⊢ ( 𝑦 = 𝑧 → ( 𝜑 ↔ [ 𝑧 / 𝑦 ] 𝜑 ) ) | |
| 4 | 1 2 3 | cbvrexw | ⊢ ( ∃ 𝑦 ∈ 𝐵 𝜑 ↔ ∃ 𝑧 ∈ 𝐵 [ 𝑧 / 𝑦 ] 𝜑 ) |
| 5 | 4 | ralbii | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ↔ ∀ 𝑥 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 [ 𝑧 / 𝑦 ] 𝜑 ) |
| 6 | dfsbcq | ⊢ ( 𝑧 = ( 𝑓 ‘ 𝑥 ) → ( [ 𝑧 / 𝑦 ] 𝜑 ↔ [ ( 𝑓 ‘ 𝑥 ) / 𝑦 ] 𝜑 ) ) | |
| 7 | 6 | ac6sfi | ⊢ ( ( 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 [ 𝑧 / 𝑦 ] 𝜑 ) → ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 [ ( 𝑓 ‘ 𝑥 ) / 𝑦 ] 𝜑 ) ) |
| 8 | 5 7 | sylan2b | ⊢ ( ( 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ) → ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 [ ( 𝑓 ‘ 𝑥 ) / 𝑦 ] 𝜑 ) ) |
| 9 | simpll | ⊢ ( ( ( 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ) ∧ ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 [ ( 𝑓 ‘ 𝑥 ) / 𝑦 ] 𝜑 ) ) → 𝐴 ∈ Fin ) | |
| 10 | ffn | ⊢ ( 𝑓 : 𝐴 ⟶ 𝐵 → 𝑓 Fn 𝐴 ) | |
| 11 | 10 | ad2antrl | ⊢ ( ( ( 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ) ∧ ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 [ ( 𝑓 ‘ 𝑥 ) / 𝑦 ] 𝜑 ) ) → 𝑓 Fn 𝐴 ) |
| 12 | dffn4 | ⊢ ( 𝑓 Fn 𝐴 ↔ 𝑓 : 𝐴 –onto→ ran 𝑓 ) | |
| 13 | 11 12 | sylib | ⊢ ( ( ( 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ) ∧ ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 [ ( 𝑓 ‘ 𝑥 ) / 𝑦 ] 𝜑 ) ) → 𝑓 : 𝐴 –onto→ ran 𝑓 ) |
| 14 | fofi | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝑓 : 𝐴 –onto→ ran 𝑓 ) → ran 𝑓 ∈ Fin ) | |
| 15 | 9 13 14 | syl2anc | ⊢ ( ( ( 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ) ∧ ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 [ ( 𝑓 ‘ 𝑥 ) / 𝑦 ] 𝜑 ) ) → ran 𝑓 ∈ Fin ) |
| 16 | frn | ⊢ ( 𝑓 : 𝐴 ⟶ 𝐵 → ran 𝑓 ⊆ 𝐵 ) | |
| 17 | 16 | ad2antrl | ⊢ ( ( ( 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ) ∧ ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 [ ( 𝑓 ‘ 𝑥 ) / 𝑦 ] 𝜑 ) ) → ran 𝑓 ⊆ 𝐵 ) |
| 18 | fnfvelrn | ⊢ ( ( 𝑓 Fn 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑓 ‘ 𝑥 ) ∈ ran 𝑓 ) | |
| 19 | 10 18 | sylan | ⊢ ( ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑓 ‘ 𝑥 ) ∈ ran 𝑓 ) |
| 20 | rspesbca | ⊢ ( ( ( 𝑓 ‘ 𝑥 ) ∈ ran 𝑓 ∧ [ ( 𝑓 ‘ 𝑥 ) / 𝑦 ] 𝜑 ) → ∃ 𝑦 ∈ ran 𝑓 𝜑 ) | |
| 21 | 20 | ex | ⊢ ( ( 𝑓 ‘ 𝑥 ) ∈ ran 𝑓 → ( [ ( 𝑓 ‘ 𝑥 ) / 𝑦 ] 𝜑 → ∃ 𝑦 ∈ ran 𝑓 𝜑 ) ) |
| 22 | 19 21 | syl | ⊢ ( ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → ( [ ( 𝑓 ‘ 𝑥 ) / 𝑦 ] 𝜑 → ∃ 𝑦 ∈ ran 𝑓 𝜑 ) ) |
| 23 | 22 | ralimdva | ⊢ ( 𝑓 : 𝐴 ⟶ 𝐵 → ( ∀ 𝑥 ∈ 𝐴 [ ( 𝑓 ‘ 𝑥 ) / 𝑦 ] 𝜑 → ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ ran 𝑓 𝜑 ) ) |
| 24 | 23 | imp | ⊢ ( ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 [ ( 𝑓 ‘ 𝑥 ) / 𝑦 ] 𝜑 ) → ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ ran 𝑓 𝜑 ) |
| 25 | 24 | adantl | ⊢ ( ( ( 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ) ∧ ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 [ ( 𝑓 ‘ 𝑥 ) / 𝑦 ] 𝜑 ) ) → ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ ran 𝑓 𝜑 ) |
| 26 | simpr | ⊢ ( ( ( ( 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ) ∧ ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 [ ( 𝑓 ‘ 𝑥 ) / 𝑦 ] 𝜑 ) ) ∧ 𝑤 ∈ 𝐴 ) → 𝑤 ∈ 𝐴 ) | |
| 27 | simprr | ⊢ ( ( ( 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ) ∧ ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 [ ( 𝑓 ‘ 𝑥 ) / 𝑦 ] 𝜑 ) ) → ∀ 𝑥 ∈ 𝐴 [ ( 𝑓 ‘ 𝑥 ) / 𝑦 ] 𝜑 ) | |
| 28 | nfv | ⊢ Ⅎ 𝑤 [ ( 𝑓 ‘ 𝑥 ) / 𝑦 ] 𝜑 | |
| 29 | nfsbc1v | ⊢ Ⅎ 𝑥 [ 𝑤 / 𝑥 ] [ ( 𝑓 ‘ 𝑤 ) / 𝑦 ] 𝜑 | |
| 30 | fveq2 | ⊢ ( 𝑥 = 𝑤 → ( 𝑓 ‘ 𝑥 ) = ( 𝑓 ‘ 𝑤 ) ) | |
| 31 | 30 | sbceq1d | ⊢ ( 𝑥 = 𝑤 → ( [ ( 𝑓 ‘ 𝑥 ) / 𝑦 ] 𝜑 ↔ [ ( 𝑓 ‘ 𝑤 ) / 𝑦 ] 𝜑 ) ) |
| 32 | sbceq1a | ⊢ ( 𝑥 = 𝑤 → ( [ ( 𝑓 ‘ 𝑤 ) / 𝑦 ] 𝜑 ↔ [ 𝑤 / 𝑥 ] [ ( 𝑓 ‘ 𝑤 ) / 𝑦 ] 𝜑 ) ) | |
| 33 | 31 32 | bitrd | ⊢ ( 𝑥 = 𝑤 → ( [ ( 𝑓 ‘ 𝑥 ) / 𝑦 ] 𝜑 ↔ [ 𝑤 / 𝑥 ] [ ( 𝑓 ‘ 𝑤 ) / 𝑦 ] 𝜑 ) ) |
| 34 | 28 29 33 | cbvralw | ⊢ ( ∀ 𝑥 ∈ 𝐴 [ ( 𝑓 ‘ 𝑥 ) / 𝑦 ] 𝜑 ↔ ∀ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] [ ( 𝑓 ‘ 𝑤 ) / 𝑦 ] 𝜑 ) |
| 35 | 27 34 | sylib | ⊢ ( ( ( 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ) ∧ ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 [ ( 𝑓 ‘ 𝑥 ) / 𝑦 ] 𝜑 ) ) → ∀ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] [ ( 𝑓 ‘ 𝑤 ) / 𝑦 ] 𝜑 ) |
| 36 | 35 | r19.21bi | ⊢ ( ( ( ( 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ) ∧ ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 [ ( 𝑓 ‘ 𝑥 ) / 𝑦 ] 𝜑 ) ) ∧ 𝑤 ∈ 𝐴 ) → [ 𝑤 / 𝑥 ] [ ( 𝑓 ‘ 𝑤 ) / 𝑦 ] 𝜑 ) |
| 37 | rspesbca | ⊢ ( ( 𝑤 ∈ 𝐴 ∧ [ 𝑤 / 𝑥 ] [ ( 𝑓 ‘ 𝑤 ) / 𝑦 ] 𝜑 ) → ∃ 𝑥 ∈ 𝐴 [ ( 𝑓 ‘ 𝑤 ) / 𝑦 ] 𝜑 ) | |
| 38 | 26 36 37 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ) ∧ ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 [ ( 𝑓 ‘ 𝑥 ) / 𝑦 ] 𝜑 ) ) ∧ 𝑤 ∈ 𝐴 ) → ∃ 𝑥 ∈ 𝐴 [ ( 𝑓 ‘ 𝑤 ) / 𝑦 ] 𝜑 ) |
| 39 | 38 | ralrimiva | ⊢ ( ( ( 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ) ∧ ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 [ ( 𝑓 ‘ 𝑥 ) / 𝑦 ] 𝜑 ) ) → ∀ 𝑤 ∈ 𝐴 ∃ 𝑥 ∈ 𝐴 [ ( 𝑓 ‘ 𝑤 ) / 𝑦 ] 𝜑 ) |
| 40 | dfsbcq | ⊢ ( 𝑧 = ( 𝑓 ‘ 𝑤 ) → ( [ 𝑧 / 𝑦 ] 𝜑 ↔ [ ( 𝑓 ‘ 𝑤 ) / 𝑦 ] 𝜑 ) ) | |
| 41 | 40 | rexbidv | ⊢ ( 𝑧 = ( 𝑓 ‘ 𝑤 ) → ( ∃ 𝑥 ∈ 𝐴 [ 𝑧 / 𝑦 ] 𝜑 ↔ ∃ 𝑥 ∈ 𝐴 [ ( 𝑓 ‘ 𝑤 ) / 𝑦 ] 𝜑 ) ) |
| 42 | 41 | ralrn | ⊢ ( 𝑓 Fn 𝐴 → ( ∀ 𝑧 ∈ ran 𝑓 ∃ 𝑥 ∈ 𝐴 [ 𝑧 / 𝑦 ] 𝜑 ↔ ∀ 𝑤 ∈ 𝐴 ∃ 𝑥 ∈ 𝐴 [ ( 𝑓 ‘ 𝑤 ) / 𝑦 ] 𝜑 ) ) |
| 43 | 11 42 | syl | ⊢ ( ( ( 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ) ∧ ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 [ ( 𝑓 ‘ 𝑥 ) / 𝑦 ] 𝜑 ) ) → ( ∀ 𝑧 ∈ ran 𝑓 ∃ 𝑥 ∈ 𝐴 [ 𝑧 / 𝑦 ] 𝜑 ↔ ∀ 𝑤 ∈ 𝐴 ∃ 𝑥 ∈ 𝐴 [ ( 𝑓 ‘ 𝑤 ) / 𝑦 ] 𝜑 ) ) |
| 44 | 39 43 | mpbird | ⊢ ( ( ( 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ) ∧ ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 [ ( 𝑓 ‘ 𝑥 ) / 𝑦 ] 𝜑 ) ) → ∀ 𝑧 ∈ ran 𝑓 ∃ 𝑥 ∈ 𝐴 [ 𝑧 / 𝑦 ] 𝜑 ) |
| 45 | nfv | ⊢ Ⅎ 𝑧 ∃ 𝑥 ∈ 𝐴 𝜑 | |
| 46 | nfcv | ⊢ Ⅎ 𝑦 𝐴 | |
| 47 | 46 2 | nfrexw | ⊢ Ⅎ 𝑦 ∃ 𝑥 ∈ 𝐴 [ 𝑧 / 𝑦 ] 𝜑 |
| 48 | 3 | rexbidv | ⊢ ( 𝑦 = 𝑧 → ( ∃ 𝑥 ∈ 𝐴 𝜑 ↔ ∃ 𝑥 ∈ 𝐴 [ 𝑧 / 𝑦 ] 𝜑 ) ) |
| 49 | 45 47 48 | cbvralw | ⊢ ( ∀ 𝑦 ∈ ran 𝑓 ∃ 𝑥 ∈ 𝐴 𝜑 ↔ ∀ 𝑧 ∈ ran 𝑓 ∃ 𝑥 ∈ 𝐴 [ 𝑧 / 𝑦 ] 𝜑 ) |
| 50 | 44 49 | sylibr | ⊢ ( ( ( 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ) ∧ ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 [ ( 𝑓 ‘ 𝑥 ) / 𝑦 ] 𝜑 ) ) → ∀ 𝑦 ∈ ran 𝑓 ∃ 𝑥 ∈ 𝐴 𝜑 ) |
| 51 | sseq1 | ⊢ ( 𝑐 = ran 𝑓 → ( 𝑐 ⊆ 𝐵 ↔ ran 𝑓 ⊆ 𝐵 ) ) | |
| 52 | rexeq | ⊢ ( 𝑐 = ran 𝑓 → ( ∃ 𝑦 ∈ 𝑐 𝜑 ↔ ∃ 𝑦 ∈ ran 𝑓 𝜑 ) ) | |
| 53 | 52 | ralbidv | ⊢ ( 𝑐 = ran 𝑓 → ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑐 𝜑 ↔ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ ran 𝑓 𝜑 ) ) |
| 54 | raleq | ⊢ ( 𝑐 = ran 𝑓 → ( ∀ 𝑦 ∈ 𝑐 ∃ 𝑥 ∈ 𝐴 𝜑 ↔ ∀ 𝑦 ∈ ran 𝑓 ∃ 𝑥 ∈ 𝐴 𝜑 ) ) | |
| 55 | 51 53 54 | 3anbi123d | ⊢ ( 𝑐 = ran 𝑓 → ( ( 𝑐 ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑐 𝜑 ∧ ∀ 𝑦 ∈ 𝑐 ∃ 𝑥 ∈ 𝐴 𝜑 ) ↔ ( ran 𝑓 ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ ran 𝑓 𝜑 ∧ ∀ 𝑦 ∈ ran 𝑓 ∃ 𝑥 ∈ 𝐴 𝜑 ) ) ) |
| 56 | 55 | rspcev | ⊢ ( ( ran 𝑓 ∈ Fin ∧ ( ran 𝑓 ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ ran 𝑓 𝜑 ∧ ∀ 𝑦 ∈ ran 𝑓 ∃ 𝑥 ∈ 𝐴 𝜑 ) ) → ∃ 𝑐 ∈ Fin ( 𝑐 ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑐 𝜑 ∧ ∀ 𝑦 ∈ 𝑐 ∃ 𝑥 ∈ 𝐴 𝜑 ) ) |
| 57 | 15 17 25 50 56 | syl13anc | ⊢ ( ( ( 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ) ∧ ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 [ ( 𝑓 ‘ 𝑥 ) / 𝑦 ] 𝜑 ) ) → ∃ 𝑐 ∈ Fin ( 𝑐 ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑐 𝜑 ∧ ∀ 𝑦 ∈ 𝑐 ∃ 𝑥 ∈ 𝐴 𝜑 ) ) |
| 58 | 8 57 | exlimddv | ⊢ ( ( 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ) → ∃ 𝑐 ∈ Fin ( 𝑐 ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑐 𝜑 ∧ ∀ 𝑦 ∈ 𝑐 ∃ 𝑥 ∈ 𝐴 𝜑 ) ) |
| 59 | 58 | 3adant2 | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ 𝑀 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ) → ∃ 𝑐 ∈ Fin ( 𝑐 ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑐 𝜑 ∧ ∀ 𝑦 ∈ 𝑐 ∃ 𝑥 ∈ 𝐴 𝜑 ) ) |