This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rearrange three restricted existential quantifiers. (Contributed by Jeff Madsen, 11-Jun-2010)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 3reeanv | ⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐶 ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ↔ ( ∃ 𝑥 ∈ 𝐴 𝜑 ∧ ∃ 𝑦 ∈ 𝐵 𝜓 ∧ ∃ 𝑧 ∈ 𝐶 𝜒 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.41v | ⊢ ( ∃ 𝑥 ∈ 𝐴 ( ∃ 𝑦 ∈ 𝐵 ( 𝜑 ∧ 𝜓 ) ∧ ∃ 𝑧 ∈ 𝐶 𝜒 ) ↔ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ( 𝜑 ∧ 𝜓 ) ∧ ∃ 𝑧 ∈ 𝐶 𝜒 ) ) | |
| 2 | reeanv | ⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ( 𝜑 ∧ 𝜓 ) ↔ ( ∃ 𝑥 ∈ 𝐴 𝜑 ∧ ∃ 𝑦 ∈ 𝐵 𝜓 ) ) | |
| 3 | 1 2 | bianbi | ⊢ ( ∃ 𝑥 ∈ 𝐴 ( ∃ 𝑦 ∈ 𝐵 ( 𝜑 ∧ 𝜓 ) ∧ ∃ 𝑧 ∈ 𝐶 𝜒 ) ↔ ( ( ∃ 𝑥 ∈ 𝐴 𝜑 ∧ ∃ 𝑦 ∈ 𝐵 𝜓 ) ∧ ∃ 𝑧 ∈ 𝐶 𝜒 ) ) |
| 4 | df-3an | ⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ↔ ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) ) | |
| 5 | 4 | 2rexbii | ⊢ ( ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐶 ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ↔ ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐶 ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) ) |
| 6 | reeanv | ⊢ ( ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐶 ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) ↔ ( ∃ 𝑦 ∈ 𝐵 ( 𝜑 ∧ 𝜓 ) ∧ ∃ 𝑧 ∈ 𝐶 𝜒 ) ) | |
| 7 | 5 6 | bitri | ⊢ ( ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐶 ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ↔ ( ∃ 𝑦 ∈ 𝐵 ( 𝜑 ∧ 𝜓 ) ∧ ∃ 𝑧 ∈ 𝐶 𝜒 ) ) |
| 8 | 7 | rexbii | ⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐶 ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ↔ ∃ 𝑥 ∈ 𝐴 ( ∃ 𝑦 ∈ 𝐵 ( 𝜑 ∧ 𝜓 ) ∧ ∃ 𝑧 ∈ 𝐶 𝜒 ) ) |
| 9 | df-3an | ⊢ ( ( ∃ 𝑥 ∈ 𝐴 𝜑 ∧ ∃ 𝑦 ∈ 𝐵 𝜓 ∧ ∃ 𝑧 ∈ 𝐶 𝜒 ) ↔ ( ( ∃ 𝑥 ∈ 𝐴 𝜑 ∧ ∃ 𝑦 ∈ 𝐵 𝜓 ) ∧ ∃ 𝑧 ∈ 𝐶 𝜒 ) ) | |
| 10 | 3 8 9 | 3bitr4i | ⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐶 ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ↔ ( ∃ 𝑥 ∈ 𝐴 𝜑 ∧ ∃ 𝑦 ∈ 𝐵 𝜓 ∧ ∃ 𝑧 ∈ 𝐶 𝜒 ) ) |