This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The image structure of a monoid is a monoid. (Contributed by Mario Carneiro, 24-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | imasmnd.u | ⊢ ( 𝜑 → 𝑈 = ( 𝐹 “s 𝑅 ) ) | |
| imasmnd.v | ⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑅 ) ) | ||
| imasmnd.p | ⊢ + = ( +g ‘ 𝑅 ) | ||
| imasmnd.f | ⊢ ( 𝜑 → 𝐹 : 𝑉 –onto→ 𝐵 ) | ||
| imasmnd.e | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉 ) ) → ( ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑝 ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑞 ) ) → ( 𝐹 ‘ ( 𝑎 + 𝑏 ) ) = ( 𝐹 ‘ ( 𝑝 + 𝑞 ) ) ) ) | ||
| imasmnd.r | ⊢ ( 𝜑 → 𝑅 ∈ Mnd ) | ||
| imasmnd.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| Assertion | imasmnd | ⊢ ( 𝜑 → ( 𝑈 ∈ Mnd ∧ ( 𝐹 ‘ 0 ) = ( 0g ‘ 𝑈 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imasmnd.u | ⊢ ( 𝜑 → 𝑈 = ( 𝐹 “s 𝑅 ) ) | |
| 2 | imasmnd.v | ⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑅 ) ) | |
| 3 | imasmnd.p | ⊢ + = ( +g ‘ 𝑅 ) | |
| 4 | imasmnd.f | ⊢ ( 𝜑 → 𝐹 : 𝑉 –onto→ 𝐵 ) | |
| 5 | imasmnd.e | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉 ) ) → ( ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑝 ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑞 ) ) → ( 𝐹 ‘ ( 𝑎 + 𝑏 ) ) = ( 𝐹 ‘ ( 𝑝 + 𝑞 ) ) ) ) | |
| 6 | imasmnd.r | ⊢ ( 𝜑 → 𝑅 ∈ Mnd ) | |
| 7 | imasmnd.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 8 | 6 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → 𝑅 ∈ Mnd ) |
| 9 | simp2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → 𝑥 ∈ 𝑉 ) | |
| 10 | 2 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → 𝑉 = ( Base ‘ 𝑅 ) ) |
| 11 | 9 10 | eleqtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) |
| 12 | simp3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → 𝑦 ∈ 𝑉 ) | |
| 13 | 12 10 | eleqtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → 𝑦 ∈ ( Base ‘ 𝑅 ) ) |
| 14 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 15 | 14 3 | mndcl | ⊢ ( ( 𝑅 ∈ Mnd ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑥 + 𝑦 ) ∈ ( Base ‘ 𝑅 ) ) |
| 16 | 8 11 13 15 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → ( 𝑥 + 𝑦 ) ∈ ( Base ‘ 𝑅 ) ) |
| 17 | 16 10 | eleqtrrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → ( 𝑥 + 𝑦 ) ∈ 𝑉 ) |
| 18 | 6 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → 𝑅 ∈ Mnd ) |
| 19 | 11 | 3adant3r3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) |
| 20 | 13 | 3adant3r3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → 𝑦 ∈ ( Base ‘ 𝑅 ) ) |
| 21 | simpr3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → 𝑧 ∈ 𝑉 ) | |
| 22 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → 𝑉 = ( Base ‘ 𝑅 ) ) |
| 23 | 21 22 | eleqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → 𝑧 ∈ ( Base ‘ 𝑅 ) ) |
| 24 | 14 3 | mndass | ⊢ ( ( 𝑅 ∈ Mnd ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) |
| 25 | 18 19 20 23 24 | syl13anc | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) |
| 26 | 25 | fveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝐹 ‘ ( ( 𝑥 + 𝑦 ) + 𝑧 ) ) = ( 𝐹 ‘ ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) ) |
| 27 | 14 7 | mndidcl | ⊢ ( 𝑅 ∈ Mnd → 0 ∈ ( Base ‘ 𝑅 ) ) |
| 28 | 6 27 | syl | ⊢ ( 𝜑 → 0 ∈ ( Base ‘ 𝑅 ) ) |
| 29 | 28 2 | eleqtrrd | ⊢ ( 𝜑 → 0 ∈ 𝑉 ) |
| 30 | 2 | eleq2d | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑉 ↔ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ) |
| 31 | 30 | biimpa | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) |
| 32 | 14 3 7 | mndlid | ⊢ ( ( 𝑅 ∈ Mnd ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 0 + 𝑥 ) = 𝑥 ) |
| 33 | 6 31 32 | syl2an2r | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( 0 + 𝑥 ) = 𝑥 ) |
| 34 | 33 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( 𝐹 ‘ ( 0 + 𝑥 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 35 | 14 3 7 | mndrid | ⊢ ( ( 𝑅 ∈ Mnd ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑥 + 0 ) = 𝑥 ) |
| 36 | 6 31 35 | syl2an2r | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( 𝑥 + 0 ) = 𝑥 ) |
| 37 | 36 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( 𝐹 ‘ ( 𝑥 + 0 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 38 | 1 2 3 4 5 6 17 26 29 34 37 | imasmnd2 | ⊢ ( 𝜑 → ( 𝑈 ∈ Mnd ∧ ( 𝐹 ‘ 0 ) = ( 0g ‘ 𝑈 ) ) ) |