This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The image structure of a monoid is a monoid. (Contributed by Mario Carneiro, 24-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | imasmnd.u | ⊢ ( 𝜑 → 𝑈 = ( 𝐹 “s 𝑅 ) ) | |
| imasmnd.v | ⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑅 ) ) | ||
| imasmnd.p | ⊢ + = ( +g ‘ 𝑅 ) | ||
| imasmnd.f | ⊢ ( 𝜑 → 𝐹 : 𝑉 –onto→ 𝐵 ) | ||
| imasmnd.e | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉 ) ) → ( ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑝 ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑞 ) ) → ( 𝐹 ‘ ( 𝑎 + 𝑏 ) ) = ( 𝐹 ‘ ( 𝑝 + 𝑞 ) ) ) ) | ||
| imasmnd2.r | ⊢ ( 𝜑 → 𝑅 ∈ 𝑊 ) | ||
| imasmnd2.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → ( 𝑥 + 𝑦 ) ∈ 𝑉 ) | ||
| imasmnd2.2 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝐹 ‘ ( ( 𝑥 + 𝑦 ) + 𝑧 ) ) = ( 𝐹 ‘ ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) ) | ||
| imasmnd2.3 | ⊢ ( 𝜑 → 0 ∈ 𝑉 ) | ||
| imasmnd2.4 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( 𝐹 ‘ ( 0 + 𝑥 ) ) = ( 𝐹 ‘ 𝑥 ) ) | ||
| imasmnd2.5 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( 𝐹 ‘ ( 𝑥 + 0 ) ) = ( 𝐹 ‘ 𝑥 ) ) | ||
| Assertion | imasmnd2 | ⊢ ( 𝜑 → ( 𝑈 ∈ Mnd ∧ ( 𝐹 ‘ 0 ) = ( 0g ‘ 𝑈 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imasmnd.u | ⊢ ( 𝜑 → 𝑈 = ( 𝐹 “s 𝑅 ) ) | |
| 2 | imasmnd.v | ⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑅 ) ) | |
| 3 | imasmnd.p | ⊢ + = ( +g ‘ 𝑅 ) | |
| 4 | imasmnd.f | ⊢ ( 𝜑 → 𝐹 : 𝑉 –onto→ 𝐵 ) | |
| 5 | imasmnd.e | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉 ) ) → ( ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑝 ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑞 ) ) → ( 𝐹 ‘ ( 𝑎 + 𝑏 ) ) = ( 𝐹 ‘ ( 𝑝 + 𝑞 ) ) ) ) | |
| 6 | imasmnd2.r | ⊢ ( 𝜑 → 𝑅 ∈ 𝑊 ) | |
| 7 | imasmnd2.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → ( 𝑥 + 𝑦 ) ∈ 𝑉 ) | |
| 8 | imasmnd2.2 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝐹 ‘ ( ( 𝑥 + 𝑦 ) + 𝑧 ) ) = ( 𝐹 ‘ ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) ) | |
| 9 | imasmnd2.3 | ⊢ ( 𝜑 → 0 ∈ 𝑉 ) | |
| 10 | imasmnd2.4 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( 𝐹 ‘ ( 0 + 𝑥 ) ) = ( 𝐹 ‘ 𝑥 ) ) | |
| 11 | imasmnd2.5 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( 𝐹 ‘ ( 𝑥 + 0 ) ) = ( 𝐹 ‘ 𝑥 ) ) | |
| 12 | 1 2 4 6 | imasbas | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑈 ) ) |
| 13 | eqidd | ⊢ ( 𝜑 → ( +g ‘ 𝑈 ) = ( +g ‘ 𝑈 ) ) | |
| 14 | eqid | ⊢ ( +g ‘ 𝑈 ) = ( +g ‘ 𝑈 ) | |
| 15 | 7 | 3expb | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑉 ) |
| 16 | 15 | caovclg | ⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉 ) ) → ( 𝑝 + 𝑞 ) ∈ 𝑉 ) |
| 17 | 4 5 1 2 6 3 14 16 | imasaddf | ⊢ ( 𝜑 → ( +g ‘ 𝑈 ) : ( 𝐵 × 𝐵 ) ⟶ 𝐵 ) |
| 18 | fovcdm | ⊢ ( ( ( +g ‘ 𝑈 ) : ( 𝐵 × 𝐵 ) ⟶ 𝐵 ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) → ( 𝑢 ( +g ‘ 𝑈 ) 𝑣 ) ∈ 𝐵 ) | |
| 19 | 17 18 | syl3an1 | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) → ( 𝑢 ( +g ‘ 𝑈 ) 𝑣 ) ∈ 𝐵 ) |
| 20 | forn | ⊢ ( 𝐹 : 𝑉 –onto→ 𝐵 → ran 𝐹 = 𝐵 ) | |
| 21 | 4 20 | syl | ⊢ ( 𝜑 → ran 𝐹 = 𝐵 ) |
| 22 | 21 | eleq2d | ⊢ ( 𝜑 → ( 𝑢 ∈ ran 𝐹 ↔ 𝑢 ∈ 𝐵 ) ) |
| 23 | 21 | eleq2d | ⊢ ( 𝜑 → ( 𝑣 ∈ ran 𝐹 ↔ 𝑣 ∈ 𝐵 ) ) |
| 24 | 21 | eleq2d | ⊢ ( 𝜑 → ( 𝑤 ∈ ran 𝐹 ↔ 𝑤 ∈ 𝐵 ) ) |
| 25 | 22 23 24 | 3anbi123d | ⊢ ( 𝜑 → ( ( 𝑢 ∈ ran 𝐹 ∧ 𝑣 ∈ ran 𝐹 ∧ 𝑤 ∈ ran 𝐹 ) ↔ ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ) |
| 26 | fofn | ⊢ ( 𝐹 : 𝑉 –onto→ 𝐵 → 𝐹 Fn 𝑉 ) | |
| 27 | 4 26 | syl | ⊢ ( 𝜑 → 𝐹 Fn 𝑉 ) |
| 28 | fvelrnb | ⊢ ( 𝐹 Fn 𝑉 → ( 𝑢 ∈ ran 𝐹 ↔ ∃ 𝑥 ∈ 𝑉 ( 𝐹 ‘ 𝑥 ) = 𝑢 ) ) | |
| 29 | fvelrnb | ⊢ ( 𝐹 Fn 𝑉 → ( 𝑣 ∈ ran 𝐹 ↔ ∃ 𝑦 ∈ 𝑉 ( 𝐹 ‘ 𝑦 ) = 𝑣 ) ) | |
| 30 | fvelrnb | ⊢ ( 𝐹 Fn 𝑉 → ( 𝑤 ∈ ran 𝐹 ↔ ∃ 𝑧 ∈ 𝑉 ( 𝐹 ‘ 𝑧 ) = 𝑤 ) ) | |
| 31 | 28 29 30 | 3anbi123d | ⊢ ( 𝐹 Fn 𝑉 → ( ( 𝑢 ∈ ran 𝐹 ∧ 𝑣 ∈ ran 𝐹 ∧ 𝑤 ∈ ran 𝐹 ) ↔ ( ∃ 𝑥 ∈ 𝑉 ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ∃ 𝑦 ∈ 𝑉 ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ∃ 𝑧 ∈ 𝑉 ( 𝐹 ‘ 𝑧 ) = 𝑤 ) ) ) |
| 32 | 27 31 | syl | ⊢ ( 𝜑 → ( ( 𝑢 ∈ ran 𝐹 ∧ 𝑣 ∈ ran 𝐹 ∧ 𝑤 ∈ ran 𝐹 ) ↔ ( ∃ 𝑥 ∈ 𝑉 ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ∃ 𝑦 ∈ 𝑉 ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ∃ 𝑧 ∈ 𝑉 ( 𝐹 ‘ 𝑧 ) = 𝑤 ) ) ) |
| 33 | 25 32 | bitr3d | ⊢ ( 𝜑 → ( ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ↔ ( ∃ 𝑥 ∈ 𝑉 ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ∃ 𝑦 ∈ 𝑉 ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ∃ 𝑧 ∈ 𝑉 ( 𝐹 ‘ 𝑧 ) = 𝑤 ) ) ) |
| 34 | 3reeanv | ⊢ ( ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ 𝑉 ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) ↔ ( ∃ 𝑥 ∈ 𝑉 ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ∃ 𝑦 ∈ 𝑉 ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ∃ 𝑧 ∈ 𝑉 ( 𝐹 ‘ 𝑧 ) = 𝑤 ) ) | |
| 35 | 33 34 | bitr4di | ⊢ ( 𝜑 → ( ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ↔ ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ 𝑉 ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) ) ) |
| 36 | simpl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → 𝜑 ) | |
| 37 | 7 | 3adant3r3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑉 ) |
| 38 | simpr3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → 𝑧 ∈ 𝑉 ) | |
| 39 | 4 5 1 2 6 3 14 | imasaddval | ⊢ ( ( 𝜑 ∧ ( 𝑥 + 𝑦 ) ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) → ( ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( 𝐹 ‘ ( ( 𝑥 + 𝑦 ) + 𝑧 ) ) ) |
| 40 | 36 37 38 39 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( 𝐹 ‘ ( ( 𝑥 + 𝑦 ) + 𝑧 ) ) ) |
| 41 | simpr1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → 𝑥 ∈ 𝑉 ) | |
| 42 | 16 | caovclg | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝑦 + 𝑧 ) ∈ 𝑉 ) |
| 43 | 42 | 3adantr1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝑦 + 𝑧 ) ∈ 𝑉 ) |
| 44 | 4 5 1 2 6 3 14 | imasaddval | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ( 𝑦 + 𝑧 ) ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ ( 𝑦 + 𝑧 ) ) ) = ( 𝐹 ‘ ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) ) |
| 45 | 36 41 43 44 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ ( 𝑦 + 𝑧 ) ) ) = ( 𝐹 ‘ ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) ) |
| 46 | 8 40 45 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ ( 𝑦 + 𝑧 ) ) ) ) |
| 47 | 4 5 1 2 6 3 14 | imasaddval | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) = ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) ) |
| 48 | 47 | 3adant3r3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) = ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) ) |
| 49 | 48 | oveq1d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) ) |
| 50 | 4 5 1 2 6 3 14 | imasaddval | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑦 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( 𝐹 ‘ ( 𝑦 + 𝑧 ) ) ) |
| 51 | 50 | 3adant3r1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ 𝑦 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( 𝐹 ‘ ( 𝑦 + 𝑧 ) ) ) |
| 52 | 51 | oveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( ( 𝐹 ‘ 𝑦 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ ( 𝑦 + 𝑧 ) ) ) ) |
| 53 | 46 49 52 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( ( 𝐹 ‘ 𝑦 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 54 | simp1 | ⊢ ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( 𝐹 ‘ 𝑥 ) = 𝑢 ) | |
| 55 | simp2 | ⊢ ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( 𝐹 ‘ 𝑦 ) = 𝑣 ) | |
| 56 | 54 55 | oveq12d | ⊢ ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) = ( 𝑢 ( +g ‘ 𝑈 ) 𝑣 ) ) |
| 57 | simp3 | ⊢ ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( 𝐹 ‘ 𝑧 ) = 𝑤 ) | |
| 58 | 56 57 | oveq12d | ⊢ ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( ( 𝑢 ( +g ‘ 𝑈 ) 𝑣 ) ( +g ‘ 𝑈 ) 𝑤 ) ) |
| 59 | 55 57 | oveq12d | ⊢ ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( 𝐹 ‘ 𝑦 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( 𝑣 ( +g ‘ 𝑈 ) 𝑤 ) ) |
| 60 | 54 59 | oveq12d | ⊢ ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( ( 𝐹 ‘ 𝑦 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) ) = ( 𝑢 ( +g ‘ 𝑈 ) ( 𝑣 ( +g ‘ 𝑈 ) 𝑤 ) ) ) |
| 61 | 58 60 | eqeq12d | ⊢ ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( ( 𝐹 ‘ 𝑦 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) ) ↔ ( ( 𝑢 ( +g ‘ 𝑈 ) 𝑣 ) ( +g ‘ 𝑈 ) 𝑤 ) = ( 𝑢 ( +g ‘ 𝑈 ) ( 𝑣 ( +g ‘ 𝑈 ) 𝑤 ) ) ) ) |
| 62 | 53 61 | syl5ibcom | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( 𝑢 ( +g ‘ 𝑈 ) 𝑣 ) ( +g ‘ 𝑈 ) 𝑤 ) = ( 𝑢 ( +g ‘ 𝑈 ) ( 𝑣 ( +g ‘ 𝑈 ) 𝑤 ) ) ) ) |
| 63 | 62 | 3exp2 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑉 → ( 𝑦 ∈ 𝑉 → ( 𝑧 ∈ 𝑉 → ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( 𝑢 ( +g ‘ 𝑈 ) 𝑣 ) ( +g ‘ 𝑈 ) 𝑤 ) = ( 𝑢 ( +g ‘ 𝑈 ) ( 𝑣 ( +g ‘ 𝑈 ) 𝑤 ) ) ) ) ) ) ) |
| 64 | 63 | imp32 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( 𝑧 ∈ 𝑉 → ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( 𝑢 ( +g ‘ 𝑈 ) 𝑣 ) ( +g ‘ 𝑈 ) 𝑤 ) = ( 𝑢 ( +g ‘ 𝑈 ) ( 𝑣 ( +g ‘ 𝑈 ) 𝑤 ) ) ) ) ) |
| 65 | 64 | rexlimdv | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( ∃ 𝑧 ∈ 𝑉 ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( 𝑢 ( +g ‘ 𝑈 ) 𝑣 ) ( +g ‘ 𝑈 ) 𝑤 ) = ( 𝑢 ( +g ‘ 𝑈 ) ( 𝑣 ( +g ‘ 𝑈 ) 𝑤 ) ) ) ) |
| 66 | 65 | rexlimdvva | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ 𝑉 ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( 𝑢 ( +g ‘ 𝑈 ) 𝑣 ) ( +g ‘ 𝑈 ) 𝑤 ) = ( 𝑢 ( +g ‘ 𝑈 ) ( 𝑣 ( +g ‘ 𝑈 ) 𝑤 ) ) ) ) |
| 67 | 35 66 | sylbid | ⊢ ( 𝜑 → ( ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) → ( ( 𝑢 ( +g ‘ 𝑈 ) 𝑣 ) ( +g ‘ 𝑈 ) 𝑤 ) = ( 𝑢 ( +g ‘ 𝑈 ) ( 𝑣 ( +g ‘ 𝑈 ) 𝑤 ) ) ) ) |
| 68 | 67 | imp | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( ( 𝑢 ( +g ‘ 𝑈 ) 𝑣 ) ( +g ‘ 𝑈 ) 𝑤 ) = ( 𝑢 ( +g ‘ 𝑈 ) ( 𝑣 ( +g ‘ 𝑈 ) 𝑤 ) ) ) |
| 69 | fof | ⊢ ( 𝐹 : 𝑉 –onto→ 𝐵 → 𝐹 : 𝑉 ⟶ 𝐵 ) | |
| 70 | 4 69 | syl | ⊢ ( 𝜑 → 𝐹 : 𝑉 ⟶ 𝐵 ) |
| 71 | 70 9 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝐹 ‘ 0 ) ∈ 𝐵 ) |
| 72 | 27 28 | syl | ⊢ ( 𝜑 → ( 𝑢 ∈ ran 𝐹 ↔ ∃ 𝑥 ∈ 𝑉 ( 𝐹 ‘ 𝑥 ) = 𝑢 ) ) |
| 73 | 22 72 | bitr3d | ⊢ ( 𝜑 → ( 𝑢 ∈ 𝐵 ↔ ∃ 𝑥 ∈ 𝑉 ( 𝐹 ‘ 𝑥 ) = 𝑢 ) ) |
| 74 | simpl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → 𝜑 ) | |
| 75 | 9 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → 0 ∈ 𝑉 ) |
| 76 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → 𝑥 ∈ 𝑉 ) | |
| 77 | 4 5 1 2 6 3 14 | imasaddval | ⊢ ( ( 𝜑 ∧ 0 ∈ 𝑉 ∧ 𝑥 ∈ 𝑉 ) → ( ( 𝐹 ‘ 0 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑥 ) ) = ( 𝐹 ‘ ( 0 + 𝑥 ) ) ) |
| 78 | 74 75 76 77 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( ( 𝐹 ‘ 0 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑥 ) ) = ( 𝐹 ‘ ( 0 + 𝑥 ) ) ) |
| 79 | 78 10 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( ( 𝐹 ‘ 0 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑥 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 80 | oveq2 | ⊢ ( ( 𝐹 ‘ 𝑥 ) = 𝑢 → ( ( 𝐹 ‘ 0 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 0 ) ( +g ‘ 𝑈 ) 𝑢 ) ) | |
| 81 | id | ⊢ ( ( 𝐹 ‘ 𝑥 ) = 𝑢 → ( 𝐹 ‘ 𝑥 ) = 𝑢 ) | |
| 82 | 80 81 | eqeq12d | ⊢ ( ( 𝐹 ‘ 𝑥 ) = 𝑢 → ( ( ( 𝐹 ‘ 0 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑥 ) ) = ( 𝐹 ‘ 𝑥 ) ↔ ( ( 𝐹 ‘ 0 ) ( +g ‘ 𝑈 ) 𝑢 ) = 𝑢 ) ) |
| 83 | 79 82 | syl5ibcom | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑥 ) = 𝑢 → ( ( 𝐹 ‘ 0 ) ( +g ‘ 𝑈 ) 𝑢 ) = 𝑢 ) ) |
| 84 | 83 | rexlimdva | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝑉 ( 𝐹 ‘ 𝑥 ) = 𝑢 → ( ( 𝐹 ‘ 0 ) ( +g ‘ 𝑈 ) 𝑢 ) = 𝑢 ) ) |
| 85 | 73 84 | sylbid | ⊢ ( 𝜑 → ( 𝑢 ∈ 𝐵 → ( ( 𝐹 ‘ 0 ) ( +g ‘ 𝑈 ) 𝑢 ) = 𝑢 ) ) |
| 86 | 85 | imp | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐵 ) → ( ( 𝐹 ‘ 0 ) ( +g ‘ 𝑈 ) 𝑢 ) = 𝑢 ) |
| 87 | 4 5 1 2 6 3 14 | imasaddval | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 0 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 0 ) ) = ( 𝐹 ‘ ( 𝑥 + 0 ) ) ) |
| 88 | 75 87 | mpd3an3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 0 ) ) = ( 𝐹 ‘ ( 𝑥 + 0 ) ) ) |
| 89 | 88 11 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 0 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 90 | oveq1 | ⊢ ( ( 𝐹 ‘ 𝑥 ) = 𝑢 → ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 0 ) ) = ( 𝑢 ( +g ‘ 𝑈 ) ( 𝐹 ‘ 0 ) ) ) | |
| 91 | 90 81 | eqeq12d | ⊢ ( ( 𝐹 ‘ 𝑥 ) = 𝑢 → ( ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 0 ) ) = ( 𝐹 ‘ 𝑥 ) ↔ ( 𝑢 ( +g ‘ 𝑈 ) ( 𝐹 ‘ 0 ) ) = 𝑢 ) ) |
| 92 | 89 91 | syl5ibcom | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑥 ) = 𝑢 → ( 𝑢 ( +g ‘ 𝑈 ) ( 𝐹 ‘ 0 ) ) = 𝑢 ) ) |
| 93 | 92 | rexlimdva | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝑉 ( 𝐹 ‘ 𝑥 ) = 𝑢 → ( 𝑢 ( +g ‘ 𝑈 ) ( 𝐹 ‘ 0 ) ) = 𝑢 ) ) |
| 94 | 73 93 | sylbid | ⊢ ( 𝜑 → ( 𝑢 ∈ 𝐵 → ( 𝑢 ( +g ‘ 𝑈 ) ( 𝐹 ‘ 0 ) ) = 𝑢 ) ) |
| 95 | 94 | imp | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐵 ) → ( 𝑢 ( +g ‘ 𝑈 ) ( 𝐹 ‘ 0 ) ) = 𝑢 ) |
| 96 | 12 13 19 68 71 86 95 | ismndd | ⊢ ( 𝜑 → 𝑈 ∈ Mnd ) |
| 97 | 12 13 71 86 95 | grpidd | ⊢ ( 𝜑 → ( 𝐹 ‘ 0 ) = ( 0g ‘ 𝑈 ) ) |
| 98 | 96 97 | jca | ⊢ ( 𝜑 → ( 𝑈 ∈ Mnd ∧ ( 𝐹 ‘ 0 ) = ( 0g ‘ 𝑈 ) ) ) |