This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The image structure of a monoid is a monoid. (Contributed by Mario Carneiro, 24-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | imasmnd.u | |- ( ph -> U = ( F "s R ) ) |
|
| imasmnd.v | |- ( ph -> V = ( Base ` R ) ) |
||
| imasmnd.p | |- .+ = ( +g ` R ) |
||
| imasmnd.f | |- ( ph -> F : V -onto-> B ) |
||
| imasmnd.e | |- ( ( ph /\ ( a e. V /\ b e. V ) /\ ( p e. V /\ q e. V ) ) -> ( ( ( F ` a ) = ( F ` p ) /\ ( F ` b ) = ( F ` q ) ) -> ( F ` ( a .+ b ) ) = ( F ` ( p .+ q ) ) ) ) |
||
| imasmnd.r | |- ( ph -> R e. Mnd ) |
||
| imasmnd.z | |- .0. = ( 0g ` R ) |
||
| Assertion | imasmnd | |- ( ph -> ( U e. Mnd /\ ( F ` .0. ) = ( 0g ` U ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imasmnd.u | |- ( ph -> U = ( F "s R ) ) |
|
| 2 | imasmnd.v | |- ( ph -> V = ( Base ` R ) ) |
|
| 3 | imasmnd.p | |- .+ = ( +g ` R ) |
|
| 4 | imasmnd.f | |- ( ph -> F : V -onto-> B ) |
|
| 5 | imasmnd.e | |- ( ( ph /\ ( a e. V /\ b e. V ) /\ ( p e. V /\ q e. V ) ) -> ( ( ( F ` a ) = ( F ` p ) /\ ( F ` b ) = ( F ` q ) ) -> ( F ` ( a .+ b ) ) = ( F ` ( p .+ q ) ) ) ) |
|
| 6 | imasmnd.r | |- ( ph -> R e. Mnd ) |
|
| 7 | imasmnd.z | |- .0. = ( 0g ` R ) |
|
| 8 | 6 | 3ad2ant1 | |- ( ( ph /\ x e. V /\ y e. V ) -> R e. Mnd ) |
| 9 | simp2 | |- ( ( ph /\ x e. V /\ y e. V ) -> x e. V ) |
|
| 10 | 2 | 3ad2ant1 | |- ( ( ph /\ x e. V /\ y e. V ) -> V = ( Base ` R ) ) |
| 11 | 9 10 | eleqtrd | |- ( ( ph /\ x e. V /\ y e. V ) -> x e. ( Base ` R ) ) |
| 12 | simp3 | |- ( ( ph /\ x e. V /\ y e. V ) -> y e. V ) |
|
| 13 | 12 10 | eleqtrd | |- ( ( ph /\ x e. V /\ y e. V ) -> y e. ( Base ` R ) ) |
| 14 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 15 | 14 3 | mndcl | |- ( ( R e. Mnd /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( x .+ y ) e. ( Base ` R ) ) |
| 16 | 8 11 13 15 | syl3anc | |- ( ( ph /\ x e. V /\ y e. V ) -> ( x .+ y ) e. ( Base ` R ) ) |
| 17 | 16 10 | eleqtrrd | |- ( ( ph /\ x e. V /\ y e. V ) -> ( x .+ y ) e. V ) |
| 18 | 6 | adantr | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> R e. Mnd ) |
| 19 | 11 | 3adant3r3 | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> x e. ( Base ` R ) ) |
| 20 | 13 | 3adant3r3 | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> y e. ( Base ` R ) ) |
| 21 | simpr3 | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> z e. V ) |
|
| 22 | 2 | adantr | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> V = ( Base ` R ) ) |
| 23 | 21 22 | eleqtrd | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> z e. ( Base ` R ) ) |
| 24 | 14 3 | mndass | |- ( ( R e. Mnd /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) /\ z e. ( Base ` R ) ) ) -> ( ( x .+ y ) .+ z ) = ( x .+ ( y .+ z ) ) ) |
| 25 | 18 19 20 23 24 | syl13anc | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( x .+ y ) .+ z ) = ( x .+ ( y .+ z ) ) ) |
| 26 | 25 | fveq2d | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( F ` ( ( x .+ y ) .+ z ) ) = ( F ` ( x .+ ( y .+ z ) ) ) ) |
| 27 | 14 7 | mndidcl | |- ( R e. Mnd -> .0. e. ( Base ` R ) ) |
| 28 | 6 27 | syl | |- ( ph -> .0. e. ( Base ` R ) ) |
| 29 | 28 2 | eleqtrrd | |- ( ph -> .0. e. V ) |
| 30 | 2 | eleq2d | |- ( ph -> ( x e. V <-> x e. ( Base ` R ) ) ) |
| 31 | 30 | biimpa | |- ( ( ph /\ x e. V ) -> x e. ( Base ` R ) ) |
| 32 | 14 3 7 | mndlid | |- ( ( R e. Mnd /\ x e. ( Base ` R ) ) -> ( .0. .+ x ) = x ) |
| 33 | 6 31 32 | syl2an2r | |- ( ( ph /\ x e. V ) -> ( .0. .+ x ) = x ) |
| 34 | 33 | fveq2d | |- ( ( ph /\ x e. V ) -> ( F ` ( .0. .+ x ) ) = ( F ` x ) ) |
| 35 | 14 3 7 | mndrid | |- ( ( R e. Mnd /\ x e. ( Base ` R ) ) -> ( x .+ .0. ) = x ) |
| 36 | 6 31 35 | syl2an2r | |- ( ( ph /\ x e. V ) -> ( x .+ .0. ) = x ) |
| 37 | 36 | fveq2d | |- ( ( ph /\ x e. V ) -> ( F ` ( x .+ .0. ) ) = ( F ` x ) ) |
| 38 | 1 2 3 4 5 6 17 26 29 34 37 | imasmnd2 | |- ( ph -> ( U e. Mnd /\ ( F ` .0. ) = ( 0g ` U ) ) ) |