This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of iimulcn as of 9-Apr-2025. (Contributed by Mario Carneiro, 8-Jun-2014) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iimulcnOLD | ⊢ ( 𝑥 ∈ ( 0 [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ ( 𝑥 · 𝑦 ) ) ∈ ( ( II ×t II ) Cn II ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 2 | 1 | dfii3 | ⊢ II = ( ( TopOpen ‘ ℂfld ) ↾t ( 0 [,] 1 ) ) |
| 3 | 1 | cnfldtopon | ⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
| 4 | 3 | a1i | ⊢ ( ⊤ → ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ) |
| 5 | unitssre | ⊢ ( 0 [,] 1 ) ⊆ ℝ | |
| 6 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 7 | 5 6 | sstri | ⊢ ( 0 [,] 1 ) ⊆ ℂ |
| 8 | 7 | a1i | ⊢ ( ⊤ → ( 0 [,] 1 ) ⊆ ℂ ) |
| 9 | ax-mulf | ⊢ · : ( ℂ × ℂ ) ⟶ ℂ | |
| 10 | ffn | ⊢ ( · : ( ℂ × ℂ ) ⟶ ℂ → · Fn ( ℂ × ℂ ) ) | |
| 11 | 9 10 | ax-mp | ⊢ · Fn ( ℂ × ℂ ) |
| 12 | fnov | ⊢ ( · Fn ( ℂ × ℂ ) ↔ · = ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ) | |
| 13 | 11 12 | mpbi | ⊢ · = ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) |
| 14 | 1 | mulcn | ⊢ · ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) |
| 15 | 13 14 | eqeltrri | ⊢ ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) |
| 16 | 15 | a1i | ⊢ ( ⊤ → ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 17 | 2 4 8 2 4 8 16 | cnmpt2res | ⊢ ( ⊤ → ( 𝑥 ∈ ( 0 [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ ( 𝑥 · 𝑦 ) ) ∈ ( ( II ×t II ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 18 | 17 | mptru | ⊢ ( 𝑥 ∈ ( 0 [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ ( 𝑥 · 𝑦 ) ) ∈ ( ( II ×t II ) Cn ( TopOpen ‘ ℂfld ) ) |
| 19 | iimulcl | ⊢ ( ( 𝑥 ∈ ( 0 [,] 1 ) ∧ 𝑦 ∈ ( 0 [,] 1 ) ) → ( 𝑥 · 𝑦 ) ∈ ( 0 [,] 1 ) ) | |
| 20 | 19 | rgen2 | ⊢ ∀ 𝑥 ∈ ( 0 [,] 1 ) ∀ 𝑦 ∈ ( 0 [,] 1 ) ( 𝑥 · 𝑦 ) ∈ ( 0 [,] 1 ) |
| 21 | eqid | ⊢ ( 𝑥 ∈ ( 0 [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ ( 𝑥 · 𝑦 ) ) = ( 𝑥 ∈ ( 0 [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ ( 𝑥 · 𝑦 ) ) | |
| 22 | 21 | fmpo | ⊢ ( ∀ 𝑥 ∈ ( 0 [,] 1 ) ∀ 𝑦 ∈ ( 0 [,] 1 ) ( 𝑥 · 𝑦 ) ∈ ( 0 [,] 1 ) ↔ ( 𝑥 ∈ ( 0 [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ ( 𝑥 · 𝑦 ) ) : ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ⟶ ( 0 [,] 1 ) ) |
| 23 | frn | ⊢ ( ( 𝑥 ∈ ( 0 [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ ( 𝑥 · 𝑦 ) ) : ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ⟶ ( 0 [,] 1 ) → ran ( 𝑥 ∈ ( 0 [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ ( 𝑥 · 𝑦 ) ) ⊆ ( 0 [,] 1 ) ) | |
| 24 | 22 23 | sylbi | ⊢ ( ∀ 𝑥 ∈ ( 0 [,] 1 ) ∀ 𝑦 ∈ ( 0 [,] 1 ) ( 𝑥 · 𝑦 ) ∈ ( 0 [,] 1 ) → ran ( 𝑥 ∈ ( 0 [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ ( 𝑥 · 𝑦 ) ) ⊆ ( 0 [,] 1 ) ) |
| 25 | 20 24 | ax-mp | ⊢ ran ( 𝑥 ∈ ( 0 [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ ( 𝑥 · 𝑦 ) ) ⊆ ( 0 [,] 1 ) |
| 26 | cnrest2 | ⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ ran ( 𝑥 ∈ ( 0 [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ ( 𝑥 · 𝑦 ) ) ⊆ ( 0 [,] 1 ) ∧ ( 0 [,] 1 ) ⊆ ℂ ) → ( ( 𝑥 ∈ ( 0 [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ ( 𝑥 · 𝑦 ) ) ∈ ( ( II ×t II ) Cn ( TopOpen ‘ ℂfld ) ) ↔ ( 𝑥 ∈ ( 0 [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ ( 𝑥 · 𝑦 ) ) ∈ ( ( II ×t II ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ( 0 [,] 1 ) ) ) ) ) | |
| 27 | 3 25 7 26 | mp3an | ⊢ ( ( 𝑥 ∈ ( 0 [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ ( 𝑥 · 𝑦 ) ) ∈ ( ( II ×t II ) Cn ( TopOpen ‘ ℂfld ) ) ↔ ( 𝑥 ∈ ( 0 [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ ( 𝑥 · 𝑦 ) ) ∈ ( ( II ×t II ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ( 0 [,] 1 ) ) ) ) |
| 28 | 18 27 | mpbi | ⊢ ( 𝑥 ∈ ( 0 [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ ( 𝑥 · 𝑦 ) ) ∈ ( ( II ×t II ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ( 0 [,] 1 ) ) ) |
| 29 | 2 | oveq2i | ⊢ ( ( II ×t II ) Cn II ) = ( ( II ×t II ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ( 0 [,] 1 ) ) ) |
| 30 | 28 29 | eleqtrri | ⊢ ( 𝑥 ∈ ( 0 [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ ( 𝑥 · 𝑦 ) ) ∈ ( ( II ×t II ) Cn II ) |