This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The unit interval is closed under multiplication. (Contributed by Jeff Madsen, 2-Sep-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iimulcl | ⊢ ( ( 𝐴 ∈ ( 0 [,] 1 ) ∧ 𝐵 ∈ ( 0 [,] 1 ) ) → ( 𝐴 · 𝐵 ) ∈ ( 0 [,] 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | remulcl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 · 𝐵 ) ∈ ℝ ) | |
| 2 | 1 | 3ad2antr1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ∧ 𝐵 ≤ 1 ) ) → ( 𝐴 · 𝐵 ) ∈ ℝ ) |
| 3 | 2 | 3ad2antl1 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 ≤ 1 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ∧ 𝐵 ≤ 1 ) ) → ( 𝐴 · 𝐵 ) ∈ ℝ ) |
| 4 | mulge0 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → 0 ≤ ( 𝐴 · 𝐵 ) ) | |
| 5 | 4 | 3adantr3 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ∧ 𝐵 ≤ 1 ) ) → 0 ≤ ( 𝐴 · 𝐵 ) ) |
| 6 | 5 | 3adantl3 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 ≤ 1 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ∧ 𝐵 ≤ 1 ) ) → 0 ≤ ( 𝐴 · 𝐵 ) ) |
| 7 | an6 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 ≤ 1 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ∧ 𝐵 ≤ 1 ) ) ↔ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) ∧ ( 𝐴 ≤ 1 ∧ 𝐵 ≤ 1 ) ) ) | |
| 8 | 1re | ⊢ 1 ∈ ℝ | |
| 9 | lemul12a | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 1 ∈ ℝ ) ∧ ( ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 1 ∈ ℝ ) ) → ( ( 𝐴 ≤ 1 ∧ 𝐵 ≤ 1 ) → ( 𝐴 · 𝐵 ) ≤ ( 1 · 1 ) ) ) | |
| 10 | 8 9 | mpanr2 | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 1 ∈ ℝ ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( ( 𝐴 ≤ 1 ∧ 𝐵 ≤ 1 ) → ( 𝐴 · 𝐵 ) ≤ ( 1 · 1 ) ) ) |
| 11 | 8 10 | mpanl2 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( ( 𝐴 ≤ 1 ∧ 𝐵 ≤ 1 ) → ( 𝐴 · 𝐵 ) ≤ ( 1 · 1 ) ) ) |
| 12 | 11 | an4s | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) ) → ( ( 𝐴 ≤ 1 ∧ 𝐵 ≤ 1 ) → ( 𝐴 · 𝐵 ) ≤ ( 1 · 1 ) ) ) |
| 13 | 12 | 3impia | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) ∧ ( 𝐴 ≤ 1 ∧ 𝐵 ≤ 1 ) ) → ( 𝐴 · 𝐵 ) ≤ ( 1 · 1 ) ) |
| 14 | 7 13 | sylbi | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 ≤ 1 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ∧ 𝐵 ≤ 1 ) ) → ( 𝐴 · 𝐵 ) ≤ ( 1 · 1 ) ) |
| 15 | 1t1e1 | ⊢ ( 1 · 1 ) = 1 | |
| 16 | 14 15 | breqtrdi | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 ≤ 1 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ∧ 𝐵 ≤ 1 ) ) → ( 𝐴 · 𝐵 ) ≤ 1 ) |
| 17 | 3 6 16 | 3jca | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 ≤ 1 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ∧ 𝐵 ≤ 1 ) ) → ( ( 𝐴 · 𝐵 ) ∈ ℝ ∧ 0 ≤ ( 𝐴 · 𝐵 ) ∧ ( 𝐴 · 𝐵 ) ≤ 1 ) ) |
| 18 | elicc01 | ⊢ ( 𝐴 ∈ ( 0 [,] 1 ) ↔ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 ≤ 1 ) ) | |
| 19 | elicc01 | ⊢ ( 𝐵 ∈ ( 0 [,] 1 ) ↔ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ∧ 𝐵 ≤ 1 ) ) | |
| 20 | 18 19 | anbi12i | ⊢ ( ( 𝐴 ∈ ( 0 [,] 1 ) ∧ 𝐵 ∈ ( 0 [,] 1 ) ) ↔ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 ≤ 1 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ∧ 𝐵 ≤ 1 ) ) ) |
| 21 | elicc01 | ⊢ ( ( 𝐴 · 𝐵 ) ∈ ( 0 [,] 1 ) ↔ ( ( 𝐴 · 𝐵 ) ∈ ℝ ∧ 0 ≤ ( 𝐴 · 𝐵 ) ∧ ( 𝐴 · 𝐵 ) ≤ 1 ) ) | |
| 22 | 17 20 21 | 3imtr4i | ⊢ ( ( 𝐴 ∈ ( 0 [,] 1 ) ∧ 𝐵 ∈ ( 0 [,] 1 ) ) → ( 𝐴 · 𝐵 ) ∈ ( 0 [,] 1 ) ) |