This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of iimulcn as of 9-Apr-2025. (Contributed by Mario Carneiro, 8-Jun-2014) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iimulcnOLD | |- ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( x x. y ) ) e. ( ( II tX II ) Cn II ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 2 | 1 | dfii3 | |- II = ( ( TopOpen ` CCfld ) |`t ( 0 [,] 1 ) ) |
| 3 | 1 | cnfldtopon | |- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
| 4 | 3 | a1i | |- ( T. -> ( TopOpen ` CCfld ) e. ( TopOn ` CC ) ) |
| 5 | unitssre | |- ( 0 [,] 1 ) C_ RR |
|
| 6 | ax-resscn | |- RR C_ CC |
|
| 7 | 5 6 | sstri | |- ( 0 [,] 1 ) C_ CC |
| 8 | 7 | a1i | |- ( T. -> ( 0 [,] 1 ) C_ CC ) |
| 9 | ax-mulf | |- x. : ( CC X. CC ) --> CC |
|
| 10 | ffn | |- ( x. : ( CC X. CC ) --> CC -> x. Fn ( CC X. CC ) ) |
|
| 11 | 9 10 | ax-mp | |- x. Fn ( CC X. CC ) |
| 12 | fnov | |- ( x. Fn ( CC X. CC ) <-> x. = ( x e. CC , y e. CC |-> ( x x. y ) ) ) |
|
| 13 | 11 12 | mpbi | |- x. = ( x e. CC , y e. CC |-> ( x x. y ) ) |
| 14 | 1 | mulcn | |- x. e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) |
| 15 | 13 14 | eqeltrri | |- ( x e. CC , y e. CC |-> ( x x. y ) ) e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) |
| 16 | 15 | a1i | |- ( T. -> ( x e. CC , y e. CC |-> ( x x. y ) ) e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) ) |
| 17 | 2 4 8 2 4 8 16 | cnmpt2res | |- ( T. -> ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( x x. y ) ) e. ( ( II tX II ) Cn ( TopOpen ` CCfld ) ) ) |
| 18 | 17 | mptru | |- ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( x x. y ) ) e. ( ( II tX II ) Cn ( TopOpen ` CCfld ) ) |
| 19 | iimulcl | |- ( ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] 1 ) ) -> ( x x. y ) e. ( 0 [,] 1 ) ) |
|
| 20 | 19 | rgen2 | |- A. x e. ( 0 [,] 1 ) A. y e. ( 0 [,] 1 ) ( x x. y ) e. ( 0 [,] 1 ) |
| 21 | eqid | |- ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( x x. y ) ) = ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( x x. y ) ) |
|
| 22 | 21 | fmpo | |- ( A. x e. ( 0 [,] 1 ) A. y e. ( 0 [,] 1 ) ( x x. y ) e. ( 0 [,] 1 ) <-> ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( x x. y ) ) : ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) --> ( 0 [,] 1 ) ) |
| 23 | frn | |- ( ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( x x. y ) ) : ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) --> ( 0 [,] 1 ) -> ran ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( x x. y ) ) C_ ( 0 [,] 1 ) ) |
|
| 24 | 22 23 | sylbi | |- ( A. x e. ( 0 [,] 1 ) A. y e. ( 0 [,] 1 ) ( x x. y ) e. ( 0 [,] 1 ) -> ran ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( x x. y ) ) C_ ( 0 [,] 1 ) ) |
| 25 | 20 24 | ax-mp | |- ran ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( x x. y ) ) C_ ( 0 [,] 1 ) |
| 26 | cnrest2 | |- ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ ran ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( x x. y ) ) C_ ( 0 [,] 1 ) /\ ( 0 [,] 1 ) C_ CC ) -> ( ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( x x. y ) ) e. ( ( II tX II ) Cn ( TopOpen ` CCfld ) ) <-> ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( x x. y ) ) e. ( ( II tX II ) Cn ( ( TopOpen ` CCfld ) |`t ( 0 [,] 1 ) ) ) ) ) |
|
| 27 | 3 25 7 26 | mp3an | |- ( ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( x x. y ) ) e. ( ( II tX II ) Cn ( TopOpen ` CCfld ) ) <-> ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( x x. y ) ) e. ( ( II tX II ) Cn ( ( TopOpen ` CCfld ) |`t ( 0 [,] 1 ) ) ) ) |
| 28 | 18 27 | mpbi | |- ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( x x. y ) ) e. ( ( II tX II ) Cn ( ( TopOpen ` CCfld ) |`t ( 0 [,] 1 ) ) ) |
| 29 | 2 | oveq2i | |- ( ( II tX II ) Cn II ) = ( ( II tX II ) Cn ( ( TopOpen ` CCfld ) |`t ( 0 [,] 1 ) ) ) |
| 30 | 28 29 | eleqtrri | |- ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( x x. y ) ) e. ( ( II tX II ) Cn II ) |