This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of iihalf2cn as of 9-Apr-2025. (Contributed by Mario Carneiro, 6-Jun-2014) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | iihalf2cnOLD.1 | ⊢ 𝐽 = ( ( topGen ‘ ran (,) ) ↾t ( ( 1 / 2 ) [,] 1 ) ) | |
| Assertion | iihalf2cnOLD | ⊢ ( 𝑥 ∈ ( ( 1 / 2 ) [,] 1 ) ↦ ( ( 2 · 𝑥 ) − 1 ) ) ∈ ( 𝐽 Cn II ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iihalf2cnOLD.1 | ⊢ 𝐽 = ( ( topGen ‘ ran (,) ) ↾t ( ( 1 / 2 ) [,] 1 ) ) | |
| 2 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 3 | dfii2 | ⊢ II = ( ( topGen ‘ ran (,) ) ↾t ( 0 [,] 1 ) ) | |
| 4 | halfre | ⊢ ( 1 / 2 ) ∈ ℝ | |
| 5 | 1re | ⊢ 1 ∈ ℝ | |
| 6 | iccssre | ⊢ ( ( ( 1 / 2 ) ∈ ℝ ∧ 1 ∈ ℝ ) → ( ( 1 / 2 ) [,] 1 ) ⊆ ℝ ) | |
| 7 | 4 5 6 | mp2an | ⊢ ( ( 1 / 2 ) [,] 1 ) ⊆ ℝ |
| 8 | 7 | a1i | ⊢ ( ⊤ → ( ( 1 / 2 ) [,] 1 ) ⊆ ℝ ) |
| 9 | unitssre | ⊢ ( 0 [,] 1 ) ⊆ ℝ | |
| 10 | 9 | a1i | ⊢ ( ⊤ → ( 0 [,] 1 ) ⊆ ℝ ) |
| 11 | iihalf2 | ⊢ ( 𝑥 ∈ ( ( 1 / 2 ) [,] 1 ) → ( ( 2 · 𝑥 ) − 1 ) ∈ ( 0 [,] 1 ) ) | |
| 12 | 11 | adantl | ⊢ ( ( ⊤ ∧ 𝑥 ∈ ( ( 1 / 2 ) [,] 1 ) ) → ( ( 2 · 𝑥 ) − 1 ) ∈ ( 0 [,] 1 ) ) |
| 13 | 2 | cnfldtopon | ⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
| 14 | 13 | a1i | ⊢ ( ⊤ → ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ) |
| 15 | 2cnd | ⊢ ( ⊤ → 2 ∈ ℂ ) | |
| 16 | 14 14 15 | cnmptc | ⊢ ( ⊤ → ( 𝑥 ∈ ℂ ↦ 2 ) ∈ ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 17 | 14 | cnmptid | ⊢ ( ⊤ → ( 𝑥 ∈ ℂ ↦ 𝑥 ) ∈ ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 18 | 2 | mulcn | ⊢ · ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) |
| 19 | 18 | a1i | ⊢ ( ⊤ → · ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 20 | 14 16 17 19 | cnmpt12f | ⊢ ( ⊤ → ( 𝑥 ∈ ℂ ↦ ( 2 · 𝑥 ) ) ∈ ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 21 | 1cnd | ⊢ ( ⊤ → 1 ∈ ℂ ) | |
| 22 | 14 14 21 | cnmptc | ⊢ ( ⊤ → ( 𝑥 ∈ ℂ ↦ 1 ) ∈ ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 23 | 2 | subcn | ⊢ − ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) |
| 24 | 23 | a1i | ⊢ ( ⊤ → − ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 25 | 14 20 22 24 | cnmpt12f | ⊢ ( ⊤ → ( 𝑥 ∈ ℂ ↦ ( ( 2 · 𝑥 ) − 1 ) ) ∈ ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 26 | 2 1 3 8 10 12 25 | cnmptre | ⊢ ( ⊤ → ( 𝑥 ∈ ( ( 1 / 2 ) [,] 1 ) ↦ ( ( 2 · 𝑥 ) − 1 ) ) ∈ ( 𝐽 Cn II ) ) |
| 27 | 26 | mptru | ⊢ ( 𝑥 ∈ ( ( 1 / 2 ) [,] 1 ) ↦ ( ( 2 · 𝑥 ) − 1 ) ) ∈ ( 𝐽 Cn II ) |