This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The second half function is a continuous map. (Contributed by Mario Carneiro, 6-Jun-2014) Avoid ax-mulf . (Revised by GG, 16-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | iihalf2cn.1 | ⊢ 𝐽 = ( ( topGen ‘ ran (,) ) ↾t ( ( 1 / 2 ) [,] 1 ) ) | |
| Assertion | iihalf2cn | ⊢ ( 𝑥 ∈ ( ( 1 / 2 ) [,] 1 ) ↦ ( ( 2 · 𝑥 ) − 1 ) ) ∈ ( 𝐽 Cn II ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iihalf2cn.1 | ⊢ 𝐽 = ( ( topGen ‘ ran (,) ) ↾t ( ( 1 / 2 ) [,] 1 ) ) | |
| 2 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 3 | dfii2 | ⊢ II = ( ( topGen ‘ ran (,) ) ↾t ( 0 [,] 1 ) ) | |
| 4 | halfre | ⊢ ( 1 / 2 ) ∈ ℝ | |
| 5 | 1red | ⊢ ( ⊤ → 1 ∈ ℝ ) | |
| 6 | iccssre | ⊢ ( ( ( 1 / 2 ) ∈ ℝ ∧ 1 ∈ ℝ ) → ( ( 1 / 2 ) [,] 1 ) ⊆ ℝ ) | |
| 7 | 4 5 6 | sylancr | ⊢ ( ⊤ → ( ( 1 / 2 ) [,] 1 ) ⊆ ℝ ) |
| 8 | unitssre | ⊢ ( 0 [,] 1 ) ⊆ ℝ | |
| 9 | 8 | a1i | ⊢ ( ⊤ → ( 0 [,] 1 ) ⊆ ℝ ) |
| 10 | iihalf2 | ⊢ ( 𝑥 ∈ ( ( 1 / 2 ) [,] 1 ) → ( ( 2 · 𝑥 ) − 1 ) ∈ ( 0 [,] 1 ) ) | |
| 11 | 10 | adantl | ⊢ ( ( ⊤ ∧ 𝑥 ∈ ( ( 1 / 2 ) [,] 1 ) ) → ( ( 2 · 𝑥 ) − 1 ) ∈ ( 0 [,] 1 ) ) |
| 12 | 2 | cnfldtopon | ⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
| 13 | 12 | a1i | ⊢ ( ⊤ → ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ) |
| 14 | 2cnd | ⊢ ( ⊤ → 2 ∈ ℂ ) | |
| 15 | 13 13 14 | cnmptc | ⊢ ( ⊤ → ( 𝑥 ∈ ℂ ↦ 2 ) ∈ ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 16 | 13 | cnmptid | ⊢ ( ⊤ → ( 𝑥 ∈ ℂ ↦ 𝑥 ) ∈ ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 17 | 2 | mpomulcn | ⊢ ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) |
| 18 | 17 | a1i | ⊢ ( ⊤ → ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 19 | oveq12 | ⊢ ( ( 𝑢 = 2 ∧ 𝑣 = 𝑥 ) → ( 𝑢 · 𝑣 ) = ( 2 · 𝑥 ) ) | |
| 20 | 13 15 16 13 13 18 19 | cnmpt12 | ⊢ ( ⊤ → ( 𝑥 ∈ ℂ ↦ ( 2 · 𝑥 ) ) ∈ ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 21 | 1cnd | ⊢ ( ⊤ → 1 ∈ ℂ ) | |
| 22 | 13 13 21 | cnmptc | ⊢ ( ⊤ → ( 𝑥 ∈ ℂ ↦ 1 ) ∈ ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 23 | 2 | subcn | ⊢ − ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) |
| 24 | 23 | a1i | ⊢ ( ⊤ → − ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 25 | 13 20 22 24 | cnmpt12f | ⊢ ( ⊤ → ( 𝑥 ∈ ℂ ↦ ( ( 2 · 𝑥 ) − 1 ) ) ∈ ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 26 | 2 1 3 7 9 11 25 | cnmptre | ⊢ ( ⊤ → ( 𝑥 ∈ ( ( 1 / 2 ) [,] 1 ) ↦ ( ( 2 · 𝑥 ) − 1 ) ) ∈ ( 𝐽 Cn II ) ) |
| 27 | 26 | mptru | ⊢ ( 𝑥 ∈ ( ( 1 / 2 ) [,] 1 ) ↦ ( ( 2 · 𝑥 ) − 1 ) ) ∈ ( 𝐽 Cn II ) |