This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for iirevcn and related functions. (Contributed by Mario Carneiro, 6-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnmptre.1 | ⊢ 𝑅 = ( TopOpen ‘ ℂfld ) | |
| cnmptre.2 | ⊢ 𝐽 = ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) | ||
| cnmptre.3 | ⊢ 𝐾 = ( ( topGen ‘ ran (,) ) ↾t 𝐵 ) | ||
| cnmptre.4 | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) | ||
| cnmptre.5 | ⊢ ( 𝜑 → 𝐵 ⊆ ℝ ) | ||
| cnmptre.6 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐹 ∈ 𝐵 ) | ||
| cnmptre.7 | ⊢ ( 𝜑 → ( 𝑥 ∈ ℂ ↦ 𝐹 ) ∈ ( 𝑅 Cn 𝑅 ) ) | ||
| Assertion | cnmptre | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐹 ) ∈ ( 𝐽 Cn 𝐾 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnmptre.1 | ⊢ 𝑅 = ( TopOpen ‘ ℂfld ) | |
| 2 | cnmptre.2 | ⊢ 𝐽 = ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) | |
| 3 | cnmptre.3 | ⊢ 𝐾 = ( ( topGen ‘ ran (,) ) ↾t 𝐵 ) | |
| 4 | cnmptre.4 | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) | |
| 5 | cnmptre.5 | ⊢ ( 𝜑 → 𝐵 ⊆ ℝ ) | |
| 6 | cnmptre.6 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐹 ∈ 𝐵 ) | |
| 7 | cnmptre.7 | ⊢ ( 𝜑 → ( 𝑥 ∈ ℂ ↦ 𝐹 ) ∈ ( 𝑅 Cn 𝑅 ) ) | |
| 8 | eqid | ⊢ ( 𝑅 ↾t 𝐴 ) = ( 𝑅 ↾t 𝐴 ) | |
| 9 | 1 | cnfldtopon | ⊢ 𝑅 ∈ ( TopOn ‘ ℂ ) |
| 10 | 9 | a1i | ⊢ ( 𝜑 → 𝑅 ∈ ( TopOn ‘ ℂ ) ) |
| 11 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 12 | 4 11 | sstrdi | ⊢ ( 𝜑 → 𝐴 ⊆ ℂ ) |
| 13 | 8 10 12 7 | cnmpt1res | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐹 ) ∈ ( ( 𝑅 ↾t 𝐴 ) Cn 𝑅 ) ) |
| 14 | eqid | ⊢ ( topGen ‘ ran (,) ) = ( topGen ‘ ran (,) ) | |
| 15 | 1 14 | rerest | ⊢ ( 𝐴 ⊆ ℝ → ( 𝑅 ↾t 𝐴 ) = ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ) |
| 16 | 4 15 | syl | ⊢ ( 𝜑 → ( 𝑅 ↾t 𝐴 ) = ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ) |
| 17 | 16 2 | eqtr4di | ⊢ ( 𝜑 → ( 𝑅 ↾t 𝐴 ) = 𝐽 ) |
| 18 | 17 | oveq1d | ⊢ ( 𝜑 → ( ( 𝑅 ↾t 𝐴 ) Cn 𝑅 ) = ( 𝐽 Cn 𝑅 ) ) |
| 19 | 13 18 | eleqtrd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐹 ) ∈ ( 𝐽 Cn 𝑅 ) ) |
| 20 | 6 | fmpttd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐹 ) : 𝐴 ⟶ 𝐵 ) |
| 21 | 20 | frnd | ⊢ ( 𝜑 → ran ( 𝑥 ∈ 𝐴 ↦ 𝐹 ) ⊆ 𝐵 ) |
| 22 | 5 11 | sstrdi | ⊢ ( 𝜑 → 𝐵 ⊆ ℂ ) |
| 23 | cnrest2 | ⊢ ( ( 𝑅 ∈ ( TopOn ‘ ℂ ) ∧ ran ( 𝑥 ∈ 𝐴 ↦ 𝐹 ) ⊆ 𝐵 ∧ 𝐵 ⊆ ℂ ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐹 ) ∈ ( 𝐽 Cn 𝑅 ) ↔ ( 𝑥 ∈ 𝐴 ↦ 𝐹 ) ∈ ( 𝐽 Cn ( 𝑅 ↾t 𝐵 ) ) ) ) | |
| 24 | 9 21 22 23 | mp3an2i | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐹 ) ∈ ( 𝐽 Cn 𝑅 ) ↔ ( 𝑥 ∈ 𝐴 ↦ 𝐹 ) ∈ ( 𝐽 Cn ( 𝑅 ↾t 𝐵 ) ) ) ) |
| 25 | 19 24 | mpbid | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐹 ) ∈ ( 𝐽 Cn ( 𝑅 ↾t 𝐵 ) ) ) |
| 26 | 1 14 | rerest | ⊢ ( 𝐵 ⊆ ℝ → ( 𝑅 ↾t 𝐵 ) = ( ( topGen ‘ ran (,) ) ↾t 𝐵 ) ) |
| 27 | 5 26 | syl | ⊢ ( 𝜑 → ( 𝑅 ↾t 𝐵 ) = ( ( topGen ‘ ran (,) ) ↾t 𝐵 ) ) |
| 28 | 27 3 | eqtr4di | ⊢ ( 𝜑 → ( 𝑅 ↾t 𝐵 ) = 𝐾 ) |
| 29 | 28 | oveq2d | ⊢ ( 𝜑 → ( 𝐽 Cn ( 𝑅 ↾t 𝐵 ) ) = ( 𝐽 Cn 𝐾 ) ) |
| 30 | 25 29 | eleqtrd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐹 ) ∈ ( 𝐽 Cn 𝐾 ) ) |