This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Divide the unit interval into two pieces. (Contributed by Mario Carneiro, 7-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elii1 | ⊢ ( 𝑋 ∈ ( 0 [,] ( 1 / 2 ) ) ↔ ( 𝑋 ∈ ( 0 [,] 1 ) ∧ 𝑋 ≤ ( 1 / 2 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re | ⊢ 0 ∈ ℝ | |
| 2 | halfre | ⊢ ( 1 / 2 ) ∈ ℝ | |
| 3 | 1 2 | elicc2i | ⊢ ( 𝑋 ∈ ( 0 [,] ( 1 / 2 ) ) ↔ ( 𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ∧ 𝑋 ≤ ( 1 / 2 ) ) ) |
| 4 | 3 | simp1bi | ⊢ ( 𝑋 ∈ ( 0 [,] ( 1 / 2 ) ) → 𝑋 ∈ ℝ ) |
| 5 | 2 | a1i | ⊢ ( 𝑋 ∈ ( 0 [,] ( 1 / 2 ) ) → ( 1 / 2 ) ∈ ℝ ) |
| 6 | 1re | ⊢ 1 ∈ ℝ | |
| 7 | 6 | a1i | ⊢ ( 𝑋 ∈ ( 0 [,] ( 1 / 2 ) ) → 1 ∈ ℝ ) |
| 8 | 3 | simp3bi | ⊢ ( 𝑋 ∈ ( 0 [,] ( 1 / 2 ) ) → 𝑋 ≤ ( 1 / 2 ) ) |
| 9 | halflt1 | ⊢ ( 1 / 2 ) < 1 | |
| 10 | 2 6 9 | ltleii | ⊢ ( 1 / 2 ) ≤ 1 |
| 11 | 10 | a1i | ⊢ ( 𝑋 ∈ ( 0 [,] ( 1 / 2 ) ) → ( 1 / 2 ) ≤ 1 ) |
| 12 | 4 5 7 8 11 | letrd | ⊢ ( 𝑋 ∈ ( 0 [,] ( 1 / 2 ) ) → 𝑋 ≤ 1 ) |
| 13 | 12 | pm4.71ri | ⊢ ( 𝑋 ∈ ( 0 [,] ( 1 / 2 ) ) ↔ ( 𝑋 ≤ 1 ∧ 𝑋 ∈ ( 0 [,] ( 1 / 2 ) ) ) ) |
| 14 | ancom | ⊢ ( ( 𝑋 ≤ 1 ∧ 𝑋 ∈ ( 0 [,] ( 1 / 2 ) ) ) ↔ ( 𝑋 ∈ ( 0 [,] ( 1 / 2 ) ) ∧ 𝑋 ≤ 1 ) ) | |
| 15 | an32 | ⊢ ( ( ( ( 𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ) ∧ 𝑋 ≤ ( 1 / 2 ) ) ∧ 𝑋 ≤ 1 ) ↔ ( ( ( 𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ) ∧ 𝑋 ≤ 1 ) ∧ 𝑋 ≤ ( 1 / 2 ) ) ) | |
| 16 | df-3an | ⊢ ( ( 𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ∧ 𝑋 ≤ ( 1 / 2 ) ) ↔ ( ( 𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ) ∧ 𝑋 ≤ ( 1 / 2 ) ) ) | |
| 17 | 3 16 | bitri | ⊢ ( 𝑋 ∈ ( 0 [,] ( 1 / 2 ) ) ↔ ( ( 𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ) ∧ 𝑋 ≤ ( 1 / 2 ) ) ) |
| 18 | 17 | anbi1i | ⊢ ( ( 𝑋 ∈ ( 0 [,] ( 1 / 2 ) ) ∧ 𝑋 ≤ 1 ) ↔ ( ( ( 𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ) ∧ 𝑋 ≤ ( 1 / 2 ) ) ∧ 𝑋 ≤ 1 ) ) |
| 19 | 1 6 | elicc2i | ⊢ ( 𝑋 ∈ ( 0 [,] 1 ) ↔ ( 𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ∧ 𝑋 ≤ 1 ) ) |
| 20 | df-3an | ⊢ ( ( 𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ∧ 𝑋 ≤ 1 ) ↔ ( ( 𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ) ∧ 𝑋 ≤ 1 ) ) | |
| 21 | 19 20 | bitri | ⊢ ( 𝑋 ∈ ( 0 [,] 1 ) ↔ ( ( 𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ) ∧ 𝑋 ≤ 1 ) ) |
| 22 | 21 | anbi1i | ⊢ ( ( 𝑋 ∈ ( 0 [,] 1 ) ∧ 𝑋 ≤ ( 1 / 2 ) ) ↔ ( ( ( 𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ) ∧ 𝑋 ≤ 1 ) ∧ 𝑋 ≤ ( 1 / 2 ) ) ) |
| 23 | 15 18 22 | 3bitr4i | ⊢ ( ( 𝑋 ∈ ( 0 [,] ( 1 / 2 ) ) ∧ 𝑋 ≤ 1 ) ↔ ( 𝑋 ∈ ( 0 [,] 1 ) ∧ 𝑋 ≤ ( 1 / 2 ) ) ) |
| 24 | 14 23 | bitri | ⊢ ( ( 𝑋 ≤ 1 ∧ 𝑋 ∈ ( 0 [,] ( 1 / 2 ) ) ) ↔ ( 𝑋 ∈ ( 0 [,] 1 ) ∧ 𝑋 ≤ ( 1 / 2 ) ) ) |
| 25 | 13 24 | bitri | ⊢ ( 𝑋 ∈ ( 0 [,] ( 1 / 2 ) ) ↔ ( 𝑋 ∈ ( 0 [,] 1 ) ∧ 𝑋 ≤ ( 1 / 2 ) ) ) |