This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Map the second half of II into II . (Contributed by Jeff Madsen, 2-Sep-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iihalf2 | ⊢ ( 𝑋 ∈ ( ( 1 / 2 ) [,] 1 ) → ( ( 2 · 𝑋 ) − 1 ) ∈ ( 0 [,] 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2re | ⊢ 2 ∈ ℝ | |
| 2 | remulcl | ⊢ ( ( 2 ∈ ℝ ∧ 𝑋 ∈ ℝ ) → ( 2 · 𝑋 ) ∈ ℝ ) | |
| 3 | 1 2 | mpan | ⊢ ( 𝑋 ∈ ℝ → ( 2 · 𝑋 ) ∈ ℝ ) |
| 4 | 1re | ⊢ 1 ∈ ℝ | |
| 5 | resubcl | ⊢ ( ( ( 2 · 𝑋 ) ∈ ℝ ∧ 1 ∈ ℝ ) → ( ( 2 · 𝑋 ) − 1 ) ∈ ℝ ) | |
| 6 | 3 4 5 | sylancl | ⊢ ( 𝑋 ∈ ℝ → ( ( 2 · 𝑋 ) − 1 ) ∈ ℝ ) |
| 7 | 6 | 3ad2ant1 | ⊢ ( ( 𝑋 ∈ ℝ ∧ ( 1 / 2 ) ≤ 𝑋 ∧ 𝑋 ≤ 1 ) → ( ( 2 · 𝑋 ) − 1 ) ∈ ℝ ) |
| 8 | subge0 | ⊢ ( ( ( 2 · 𝑋 ) ∈ ℝ ∧ 1 ∈ ℝ ) → ( 0 ≤ ( ( 2 · 𝑋 ) − 1 ) ↔ 1 ≤ ( 2 · 𝑋 ) ) ) | |
| 9 | 3 4 8 | sylancl | ⊢ ( 𝑋 ∈ ℝ → ( 0 ≤ ( ( 2 · 𝑋 ) − 1 ) ↔ 1 ≤ ( 2 · 𝑋 ) ) ) |
| 10 | 2pos | ⊢ 0 < 2 | |
| 11 | 1 10 | pm3.2i | ⊢ ( 2 ∈ ℝ ∧ 0 < 2 ) |
| 12 | ledivmul | ⊢ ( ( 1 ∈ ℝ ∧ 𝑋 ∈ ℝ ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → ( ( 1 / 2 ) ≤ 𝑋 ↔ 1 ≤ ( 2 · 𝑋 ) ) ) | |
| 13 | 4 11 12 | mp3an13 | ⊢ ( 𝑋 ∈ ℝ → ( ( 1 / 2 ) ≤ 𝑋 ↔ 1 ≤ ( 2 · 𝑋 ) ) ) |
| 14 | 9 13 | bitr4d | ⊢ ( 𝑋 ∈ ℝ → ( 0 ≤ ( ( 2 · 𝑋 ) − 1 ) ↔ ( 1 / 2 ) ≤ 𝑋 ) ) |
| 15 | 14 | biimpar | ⊢ ( ( 𝑋 ∈ ℝ ∧ ( 1 / 2 ) ≤ 𝑋 ) → 0 ≤ ( ( 2 · 𝑋 ) − 1 ) ) |
| 16 | 15 | 3adant3 | ⊢ ( ( 𝑋 ∈ ℝ ∧ ( 1 / 2 ) ≤ 𝑋 ∧ 𝑋 ≤ 1 ) → 0 ≤ ( ( 2 · 𝑋 ) − 1 ) ) |
| 17 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 18 | 17 | 2timesi | ⊢ ( 2 · 1 ) = ( 1 + 1 ) |
| 19 | 18 | a1i | ⊢ ( 𝑋 ∈ ℝ → ( 2 · 1 ) = ( 1 + 1 ) ) |
| 20 | 19 | breq2d | ⊢ ( 𝑋 ∈ ℝ → ( ( 2 · 𝑋 ) ≤ ( 2 · 1 ) ↔ ( 2 · 𝑋 ) ≤ ( 1 + 1 ) ) ) |
| 21 | lemul2 | ⊢ ( ( 𝑋 ∈ ℝ ∧ 1 ∈ ℝ ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → ( 𝑋 ≤ 1 ↔ ( 2 · 𝑋 ) ≤ ( 2 · 1 ) ) ) | |
| 22 | 4 11 21 | mp3an23 | ⊢ ( 𝑋 ∈ ℝ → ( 𝑋 ≤ 1 ↔ ( 2 · 𝑋 ) ≤ ( 2 · 1 ) ) ) |
| 23 | lesubadd | ⊢ ( ( ( 2 · 𝑋 ) ∈ ℝ ∧ 1 ∈ ℝ ∧ 1 ∈ ℝ ) → ( ( ( 2 · 𝑋 ) − 1 ) ≤ 1 ↔ ( 2 · 𝑋 ) ≤ ( 1 + 1 ) ) ) | |
| 24 | 4 4 23 | mp3an23 | ⊢ ( ( 2 · 𝑋 ) ∈ ℝ → ( ( ( 2 · 𝑋 ) − 1 ) ≤ 1 ↔ ( 2 · 𝑋 ) ≤ ( 1 + 1 ) ) ) |
| 25 | 3 24 | syl | ⊢ ( 𝑋 ∈ ℝ → ( ( ( 2 · 𝑋 ) − 1 ) ≤ 1 ↔ ( 2 · 𝑋 ) ≤ ( 1 + 1 ) ) ) |
| 26 | 20 22 25 | 3bitr4d | ⊢ ( 𝑋 ∈ ℝ → ( 𝑋 ≤ 1 ↔ ( ( 2 · 𝑋 ) − 1 ) ≤ 1 ) ) |
| 27 | 26 | biimpa | ⊢ ( ( 𝑋 ∈ ℝ ∧ 𝑋 ≤ 1 ) → ( ( 2 · 𝑋 ) − 1 ) ≤ 1 ) |
| 28 | 27 | 3adant2 | ⊢ ( ( 𝑋 ∈ ℝ ∧ ( 1 / 2 ) ≤ 𝑋 ∧ 𝑋 ≤ 1 ) → ( ( 2 · 𝑋 ) − 1 ) ≤ 1 ) |
| 29 | 7 16 28 | 3jca | ⊢ ( ( 𝑋 ∈ ℝ ∧ ( 1 / 2 ) ≤ 𝑋 ∧ 𝑋 ≤ 1 ) → ( ( ( 2 · 𝑋 ) − 1 ) ∈ ℝ ∧ 0 ≤ ( ( 2 · 𝑋 ) − 1 ) ∧ ( ( 2 · 𝑋 ) − 1 ) ≤ 1 ) ) |
| 30 | halfre | ⊢ ( 1 / 2 ) ∈ ℝ | |
| 31 | 30 4 | elicc2i | ⊢ ( 𝑋 ∈ ( ( 1 / 2 ) [,] 1 ) ↔ ( 𝑋 ∈ ℝ ∧ ( 1 / 2 ) ≤ 𝑋 ∧ 𝑋 ≤ 1 ) ) |
| 32 | elicc01 | ⊢ ( ( ( 2 · 𝑋 ) − 1 ) ∈ ( 0 [,] 1 ) ↔ ( ( ( 2 · 𝑋 ) − 1 ) ∈ ℝ ∧ 0 ≤ ( ( 2 · 𝑋 ) − 1 ) ∧ ( ( 2 · 𝑋 ) − 1 ) ≤ 1 ) ) | |
| 33 | 29 31 32 | 3imtr4i | ⊢ ( 𝑋 ∈ ( ( 1 / 2 ) [,] 1 ) → ( ( 2 · 𝑋 ) − 1 ) ∈ ( 0 [,] 1 ) ) |