This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The second half function is a continuous map. (Contributed by Mario Carneiro, 6-Jun-2014) Avoid ax-mulf . (Revised by GG, 16-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | iihalf2cn.1 | |- J = ( ( topGen ` ran (,) ) |`t ( ( 1 / 2 ) [,] 1 ) ) |
|
| Assertion | iihalf2cn | |- ( x e. ( ( 1 / 2 ) [,] 1 ) |-> ( ( 2 x. x ) - 1 ) ) e. ( J Cn II ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iihalf2cn.1 | |- J = ( ( topGen ` ran (,) ) |`t ( ( 1 / 2 ) [,] 1 ) ) |
|
| 2 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 3 | dfii2 | |- II = ( ( topGen ` ran (,) ) |`t ( 0 [,] 1 ) ) |
|
| 4 | halfre | |- ( 1 / 2 ) e. RR |
|
| 5 | 1red | |- ( T. -> 1 e. RR ) |
|
| 6 | iccssre | |- ( ( ( 1 / 2 ) e. RR /\ 1 e. RR ) -> ( ( 1 / 2 ) [,] 1 ) C_ RR ) |
|
| 7 | 4 5 6 | sylancr | |- ( T. -> ( ( 1 / 2 ) [,] 1 ) C_ RR ) |
| 8 | unitssre | |- ( 0 [,] 1 ) C_ RR |
|
| 9 | 8 | a1i | |- ( T. -> ( 0 [,] 1 ) C_ RR ) |
| 10 | iihalf2 | |- ( x e. ( ( 1 / 2 ) [,] 1 ) -> ( ( 2 x. x ) - 1 ) e. ( 0 [,] 1 ) ) |
|
| 11 | 10 | adantl | |- ( ( T. /\ x e. ( ( 1 / 2 ) [,] 1 ) ) -> ( ( 2 x. x ) - 1 ) e. ( 0 [,] 1 ) ) |
| 12 | 2 | cnfldtopon | |- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
| 13 | 12 | a1i | |- ( T. -> ( TopOpen ` CCfld ) e. ( TopOn ` CC ) ) |
| 14 | 2cnd | |- ( T. -> 2 e. CC ) |
|
| 15 | 13 13 14 | cnmptc | |- ( T. -> ( x e. CC |-> 2 ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) |
| 16 | 13 | cnmptid | |- ( T. -> ( x e. CC |-> x ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) |
| 17 | 2 | mpomulcn | |- ( u e. CC , v e. CC |-> ( u x. v ) ) e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) |
| 18 | 17 | a1i | |- ( T. -> ( u e. CC , v e. CC |-> ( u x. v ) ) e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) ) |
| 19 | oveq12 | |- ( ( u = 2 /\ v = x ) -> ( u x. v ) = ( 2 x. x ) ) |
|
| 20 | 13 15 16 13 13 18 19 | cnmpt12 | |- ( T. -> ( x e. CC |-> ( 2 x. x ) ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) |
| 21 | 1cnd | |- ( T. -> 1 e. CC ) |
|
| 22 | 13 13 21 | cnmptc | |- ( T. -> ( x e. CC |-> 1 ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) |
| 23 | 2 | subcn | |- - e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) |
| 24 | 23 | a1i | |- ( T. -> - e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) ) |
| 25 | 13 20 22 24 | cnmpt12f | |- ( T. -> ( x e. CC |-> ( ( 2 x. x ) - 1 ) ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) |
| 26 | 2 1 3 7 9 11 25 | cnmptre | |- ( T. -> ( x e. ( ( 1 / 2 ) [,] 1 ) |-> ( ( 2 x. x ) - 1 ) ) e. ( J Cn II ) ) |
| 27 | 26 | mptru | |- ( x e. ( ( 1 / 2 ) [,] 1 ) |-> ( ( 2 x. x ) - 1 ) ) e. ( J Cn II ) |