This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the open inverval is removed from the closed interval, only the bounds are left. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iccdifioo | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → ( ( 𝐴 [,] 𝐵 ) ∖ ( 𝐴 (,) 𝐵 ) ) = { 𝐴 , 𝐵 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prunioo | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 , 𝐵 } ) = ( 𝐴 [,] 𝐵 ) ) | |
| 2 | uncom | ⊢ ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 , 𝐵 } ) = ( { 𝐴 , 𝐵 } ∪ ( 𝐴 (,) 𝐵 ) ) | |
| 3 | 1 2 | eqtr3di | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → ( 𝐴 [,] 𝐵 ) = ( { 𝐴 , 𝐵 } ∪ ( 𝐴 (,) 𝐵 ) ) ) |
| 4 | 3 | difeq1d | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → ( ( 𝐴 [,] 𝐵 ) ∖ ( 𝐴 (,) 𝐵 ) ) = ( ( { 𝐴 , 𝐵 } ∪ ( 𝐴 (,) 𝐵 ) ) ∖ ( 𝐴 (,) 𝐵 ) ) ) |
| 5 | difun2 | ⊢ ( ( { 𝐴 , 𝐵 } ∪ ( 𝐴 (,) 𝐵 ) ) ∖ ( 𝐴 (,) 𝐵 ) ) = ( { 𝐴 , 𝐵 } ∖ ( 𝐴 (,) 𝐵 ) ) | |
| 6 | 5 | a1i | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → ( ( { 𝐴 , 𝐵 } ∪ ( 𝐴 (,) 𝐵 ) ) ∖ ( 𝐴 (,) 𝐵 ) ) = ( { 𝐴 , 𝐵 } ∖ ( 𝐴 (,) 𝐵 ) ) ) |
| 7 | incom | ⊢ ( ( 𝐴 (,) 𝐵 ) ∩ { 𝐴 , 𝐵 } ) = ( { 𝐴 , 𝐵 } ∩ ( 𝐴 (,) 𝐵 ) ) | |
| 8 | iooinlbub | ⊢ ( ( 𝐴 (,) 𝐵 ) ∩ { 𝐴 , 𝐵 } ) = ∅ | |
| 9 | 7 8 | eqtr3i | ⊢ ( { 𝐴 , 𝐵 } ∩ ( 𝐴 (,) 𝐵 ) ) = ∅ |
| 10 | disj3 | ⊢ ( ( { 𝐴 , 𝐵 } ∩ ( 𝐴 (,) 𝐵 ) ) = ∅ ↔ { 𝐴 , 𝐵 } = ( { 𝐴 , 𝐵 } ∖ ( 𝐴 (,) 𝐵 ) ) ) | |
| 11 | 9 10 | mpbi | ⊢ { 𝐴 , 𝐵 } = ( { 𝐴 , 𝐵 } ∖ ( 𝐴 (,) 𝐵 ) ) |
| 12 | 11 | eqcomi | ⊢ ( { 𝐴 , 𝐵 } ∖ ( 𝐴 (,) 𝐵 ) ) = { 𝐴 , 𝐵 } |
| 13 | 12 | a1i | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → ( { 𝐴 , 𝐵 } ∖ ( 𝐴 (,) 𝐵 ) ) = { 𝐴 , 𝐵 } ) |
| 14 | 4 6 13 | 3eqtrd | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → ( ( 𝐴 [,] 𝐵 ) ∖ ( 𝐴 (,) 𝐵 ) ) = { 𝐴 , 𝐵 } ) |