This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the open inverval is removed from the closed interval, only the bounds are left. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iccdifioo | |- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> ( ( A [,] B ) \ ( A (,) B ) ) = { A , B } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prunioo | |- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> ( ( A (,) B ) u. { A , B } ) = ( A [,] B ) ) |
|
| 2 | uncom | |- ( ( A (,) B ) u. { A , B } ) = ( { A , B } u. ( A (,) B ) ) |
|
| 3 | 1 2 | eqtr3di | |- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> ( A [,] B ) = ( { A , B } u. ( A (,) B ) ) ) |
| 4 | 3 | difeq1d | |- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> ( ( A [,] B ) \ ( A (,) B ) ) = ( ( { A , B } u. ( A (,) B ) ) \ ( A (,) B ) ) ) |
| 5 | difun2 | |- ( ( { A , B } u. ( A (,) B ) ) \ ( A (,) B ) ) = ( { A , B } \ ( A (,) B ) ) |
|
| 6 | 5 | a1i | |- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> ( ( { A , B } u. ( A (,) B ) ) \ ( A (,) B ) ) = ( { A , B } \ ( A (,) B ) ) ) |
| 7 | incom | |- ( ( A (,) B ) i^i { A , B } ) = ( { A , B } i^i ( A (,) B ) ) |
|
| 8 | iooinlbub | |- ( ( A (,) B ) i^i { A , B } ) = (/) |
|
| 9 | 7 8 | eqtr3i | |- ( { A , B } i^i ( A (,) B ) ) = (/) |
| 10 | disj3 | |- ( ( { A , B } i^i ( A (,) B ) ) = (/) <-> { A , B } = ( { A , B } \ ( A (,) B ) ) ) |
|
| 11 | 9 10 | mpbi | |- { A , B } = ( { A , B } \ ( A (,) B ) ) |
| 12 | 11 | eqcomi | |- ( { A , B } \ ( A (,) B ) ) = { A , B } |
| 13 | 12 | a1i | |- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> ( { A , B } \ ( A (,) B ) ) = { A , B } ) |
| 14 | 4 6 13 | 3eqtrd | |- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> ( ( A [,] B ) \ ( A (,) B ) ) = { A , B } ) |