This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The union of two integrable functions is integrable. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iblsplit.1 | ⊢ ( 𝜑 → ( vol* ‘ ( 𝐴 ∩ 𝐵 ) ) = 0 ) | |
| iblsplit.2 | ⊢ ( 𝜑 → 𝑈 = ( 𝐴 ∪ 𝐵 ) ) | ||
| iblsplit.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑈 ) → 𝐶 ∈ ℂ ) | ||
| iblsplit.4 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝐿1 ) | ||
| iblsplit.5 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ∈ 𝐿1 ) | ||
| Assertion | iblsplit | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑈 ↦ 𝐶 ) ∈ 𝐿1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iblsplit.1 | ⊢ ( 𝜑 → ( vol* ‘ ( 𝐴 ∩ 𝐵 ) ) = 0 ) | |
| 2 | iblsplit.2 | ⊢ ( 𝜑 → 𝑈 = ( 𝐴 ∪ 𝐵 ) ) | |
| 3 | iblsplit.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑈 ) → 𝐶 ∈ ℂ ) | |
| 4 | iblsplit.4 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝐿1 ) | |
| 5 | iblsplit.5 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ∈ 𝐿1 ) | |
| 6 | 3 | fmpttd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑈 ↦ 𝐶 ) : 𝑈 ⟶ ℂ ) |
| 7 | ssun1 | ⊢ 𝐴 ⊆ ( 𝐴 ∪ 𝐵 ) | |
| 8 | 7 2 | sseqtrrid | ⊢ ( 𝜑 → 𝐴 ⊆ 𝑈 ) |
| 9 | 8 | resmptd | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑈 ↦ 𝐶 ) ↾ 𝐴 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ) |
| 10 | eqidd | ⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑦 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑦 ) ) ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑦 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑦 ) ) ) , 0 ) ) ) | |
| 11 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑦 ) ) ) = ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑦 ) ) ) ) | |
| 12 | 8 | sseld | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝑈 ) ) |
| 13 | 12 | imdistani | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝜑 ∧ 𝑥 ∈ 𝑈 ) ) |
| 14 | 13 3 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) |
| 15 | 10 11 14 | isibl2 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝐿1 ↔ ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ MblFn ∧ ∀ 𝑦 ∈ ( 0 ... 3 ) ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑦 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑦 ) ) ) , 0 ) ) ) ∈ ℝ ) ) ) |
| 16 | 4 15 | mpbid | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ MblFn ∧ ∀ 𝑦 ∈ ( 0 ... 3 ) ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑦 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑦 ) ) ) , 0 ) ) ) ∈ ℝ ) ) |
| 17 | 16 | simpld | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ MblFn ) |
| 18 | 9 17 | eqeltrd | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑈 ↦ 𝐶 ) ↾ 𝐴 ) ∈ MblFn ) |
| 19 | ssun2 | ⊢ 𝐵 ⊆ ( 𝐴 ∪ 𝐵 ) | |
| 20 | 19 2 | sseqtrrid | ⊢ ( 𝜑 → 𝐵 ⊆ 𝑈 ) |
| 21 | 20 | resmptd | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑈 ↦ 𝐶 ) ↾ 𝐵 ) = ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ) |
| 22 | eqidd | ⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐵 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑦 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑦 ) ) ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐵 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑦 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑦 ) ) ) , 0 ) ) ) | |
| 23 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑦 ) ) ) = ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑦 ) ) ) ) | |
| 24 | 20 | sseld | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 → 𝑥 ∈ 𝑈 ) ) |
| 25 | 24 | imdistani | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝜑 ∧ 𝑥 ∈ 𝑈 ) ) |
| 26 | 25 3 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝐶 ∈ ℂ ) |
| 27 | 22 23 26 | isibl2 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ∈ 𝐿1 ↔ ( ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ∈ MblFn ∧ ∀ 𝑦 ∈ ( 0 ... 3 ) ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐵 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑦 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑦 ) ) ) , 0 ) ) ) ∈ ℝ ) ) ) |
| 28 | 5 27 | mpbid | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ∈ MblFn ∧ ∀ 𝑦 ∈ ( 0 ... 3 ) ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐵 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑦 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑦 ) ) ) , 0 ) ) ) ∈ ℝ ) ) |
| 29 | 28 | simpld | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ∈ MblFn ) |
| 30 | 21 29 | eqeltrd | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑈 ↦ 𝐶 ) ↾ 𝐵 ) ∈ MblFn ) |
| 31 | 2 | eqcomd | ⊢ ( 𝜑 → ( 𝐴 ∪ 𝐵 ) = 𝑈 ) |
| 32 | 6 18 30 31 | mbfres2cn | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑈 ↦ 𝐶 ) ∈ MblFn ) |
| 33 | 17 14 | mbfdm2 | ⊢ ( 𝜑 → 𝐴 ∈ dom vol ) |
| 34 | 33 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) → 𝐴 ∈ dom vol ) |
| 35 | 29 26 | mbfdm2 | ⊢ ( 𝜑 → 𝐵 ∈ dom vol ) |
| 36 | 35 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) → 𝐵 ∈ dom vol ) |
| 37 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) → ( vol* ‘ ( 𝐴 ∩ 𝐵 ) ) = 0 ) |
| 38 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) → 𝑈 = ( 𝐴 ∪ 𝐵 ) ) |
| 39 | 3 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ 𝑈 ) → 𝐶 ∈ ℂ ) |
| 40 | ax-icn | ⊢ i ∈ ℂ | |
| 41 | 40 | a1i | ⊢ ( 𝑘 ∈ ( 0 ... 3 ) → i ∈ ℂ ) |
| 42 | elfznn0 | ⊢ ( 𝑘 ∈ ( 0 ... 3 ) → 𝑘 ∈ ℕ0 ) | |
| 43 | 41 42 | expcld | ⊢ ( 𝑘 ∈ ( 0 ... 3 ) → ( i ↑ 𝑘 ) ∈ ℂ ) |
| 44 | 43 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ 𝑈 ) → ( i ↑ 𝑘 ) ∈ ℂ ) |
| 45 | 40 | a1i | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ 𝑈 ) → i ∈ ℂ ) |
| 46 | ine0 | ⊢ i ≠ 0 | |
| 47 | 46 | a1i | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ 𝑈 ) → i ≠ 0 ) |
| 48 | elfzelz | ⊢ ( 𝑘 ∈ ( 0 ... 3 ) → 𝑘 ∈ ℤ ) | |
| 49 | 48 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ 𝑈 ) → 𝑘 ∈ ℤ ) |
| 50 | 45 47 49 | expne0d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ 𝑈 ) → ( i ↑ 𝑘 ) ≠ 0 ) |
| 51 | 39 44 50 | divcld | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ 𝑈 ) → ( 𝐶 / ( i ↑ 𝑘 ) ) ∈ ℂ ) |
| 52 | 51 | recld | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ 𝑈 ) → ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ∈ ℝ ) |
| 53 | 52 | rexrd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ 𝑈 ) → ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ∈ ℝ* ) |
| 54 | 53 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ 𝑈 ) ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) → ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ∈ ℝ* ) |
| 55 | simpr | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ 𝑈 ) ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) → 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) | |
| 56 | pnfge | ⊢ ( ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ∈ ℝ* → ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ≤ +∞ ) | |
| 57 | 54 56 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ 𝑈 ) ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) → ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ≤ +∞ ) |
| 58 | 0xr | ⊢ 0 ∈ ℝ* | |
| 59 | pnfxr | ⊢ +∞ ∈ ℝ* | |
| 60 | elicc1 | ⊢ ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ∈ ( 0 [,] +∞ ) ↔ ( ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ∈ ℝ* ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ∧ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ≤ +∞ ) ) ) | |
| 61 | 58 59 60 | mp2an | ⊢ ( ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ∈ ( 0 [,] +∞ ) ↔ ( ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ∈ ℝ* ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ∧ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ≤ +∞ ) ) |
| 62 | 54 55 57 61 | syl3anbrc | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ 𝑈 ) ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) → ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ∈ ( 0 [,] +∞ ) ) |
| 63 | 0e0iccpnf | ⊢ 0 ∈ ( 0 [,] +∞ ) | |
| 64 | 63 | a1i | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ 𝑈 ) ∧ ¬ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) → 0 ∈ ( 0 [,] +∞ ) ) |
| 65 | 62 64 | ifclda | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ 𝑈 ) → if ( 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ∈ ( 0 [,] +∞ ) ) |
| 66 | eqid | ⊢ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) , 0 ) ) | |
| 67 | eqid | ⊢ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐵 , if ( 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐵 , if ( 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) , 0 ) ) | |
| 68 | ifan | ⊢ if ( ( 𝑥 ∈ 𝑈 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) = if ( 𝑥 ∈ 𝑈 , if ( 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) , 0 ) | |
| 69 | 68 | mpteq2i | ⊢ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝑈 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝑈 , if ( 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) , 0 ) ) |
| 70 | ifan | ⊢ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) = if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) , 0 ) | |
| 71 | 70 | eqcomi | ⊢ if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) , 0 ) = if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) |
| 72 | 71 | mpteq2i | ⊢ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) |
| 73 | 72 | a1i | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) |
| 74 | 73 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) , 0 ) ) ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ) |
| 75 | eqidd | ⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) | |
| 76 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) = ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) | |
| 77 | 75 76 14 | isibl2 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝐿1 ↔ ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ MblFn ∧ ∀ 𝑘 ∈ ( 0 ... 3 ) ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ∈ ℝ ) ) ) |
| 78 | 4 77 | mpbid | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ MblFn ∧ ∀ 𝑘 ∈ ( 0 ... 3 ) ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ∈ ℝ ) ) |
| 79 | 78 | simprd | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 0 ... 3 ) ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ∈ ℝ ) |
| 80 | 79 | r19.21bi | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ∈ ℝ ) |
| 81 | 74 80 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) , 0 ) ) ) ∈ ℝ ) |
| 82 | ifan | ⊢ if ( ( 𝑥 ∈ 𝐵 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) = if ( 𝑥 ∈ 𝐵 , if ( 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) , 0 ) | |
| 83 | 82 | eqcomi | ⊢ if ( 𝑥 ∈ 𝐵 , if ( 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) , 0 ) = if ( ( 𝑥 ∈ 𝐵 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) |
| 84 | 83 | mpteq2i | ⊢ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐵 , if ( 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐵 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) |
| 85 | 84 | fveq2i | ⊢ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐵 , if ( 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) , 0 ) ) ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐵 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) |
| 86 | eqidd | ⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐵 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐵 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) | |
| 87 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) = ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) | |
| 88 | 86 87 26 | isibl2 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ∈ 𝐿1 ↔ ( ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ∈ MblFn ∧ ∀ 𝑘 ∈ ( 0 ... 3 ) ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐵 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ∈ ℝ ) ) ) |
| 89 | 5 88 | mpbid | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ∈ MblFn ∧ ∀ 𝑘 ∈ ( 0 ... 3 ) ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐵 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ∈ ℝ ) ) |
| 90 | 89 | simprd | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 0 ... 3 ) ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐵 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ∈ ℝ ) |
| 91 | 90 | r19.21bi | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐵 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ∈ ℝ ) |
| 92 | 85 91 | eqeltrid | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐵 , if ( 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) , 0 ) ) ) ∈ ℝ ) |
| 93 | 34 36 37 38 65 66 67 69 81 92 | itg2split | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝑈 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) = ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) , 0 ) ) ) + ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐵 , if ( 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) , 0 ) ) ) ) ) |
| 94 | 81 92 | readdcld | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) → ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) , 0 ) ) ) + ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐵 , if ( 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) , 0 ) ) ) ) ∈ ℝ ) |
| 95 | 93 94 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝑈 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ∈ ℝ ) |
| 96 | 95 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 0 ... 3 ) ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝑈 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ∈ ℝ ) |
| 97 | eqidd | ⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝑈 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝑈 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) | |
| 98 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑈 ) → ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) = ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) | |
| 99 | 97 98 3 | isibl2 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑈 ↦ 𝐶 ) ∈ 𝐿1 ↔ ( ( 𝑥 ∈ 𝑈 ↦ 𝐶 ) ∈ MblFn ∧ ∀ 𝑘 ∈ ( 0 ... 3 ) ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝑈 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ∈ ℝ ) ) ) |
| 100 | 32 96 99 | mpbir2and | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑈 ↦ 𝐶 ) ∈ 𝐿1 ) |