This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If F is a complex continuous function and N is a fixed number, then F^N is continuous too. A generalization of expcncf . (Contributed by Glauco Siliprandi, 29-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | expcnfg.1 | ⊢ Ⅎ 𝑥 𝐹 | |
| expcnfg.2 | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐴 –cn→ ℂ ) ) | ||
| expcnfg.3 | ⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) | ||
| Assertion | expcnfg | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑥 ) ↑ 𝑁 ) ) ∈ ( 𝐴 –cn→ ℂ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | expcnfg.1 | ⊢ Ⅎ 𝑥 𝐹 | |
| 2 | expcnfg.2 | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐴 –cn→ ℂ ) ) | |
| 3 | expcnfg.3 | ⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) | |
| 4 | nfcv | ⊢ Ⅎ 𝑡 ( ( 𝐹 ‘ 𝑥 ) ↑ 𝑁 ) | |
| 5 | nfcv | ⊢ Ⅎ 𝑥 𝑡 | |
| 6 | 1 5 | nffv | ⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝑡 ) |
| 7 | nfcv | ⊢ Ⅎ 𝑥 ↑ | |
| 8 | nfcv | ⊢ Ⅎ 𝑥 𝑁 | |
| 9 | 6 7 8 | nfov | ⊢ Ⅎ 𝑥 ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑁 ) |
| 10 | fveq2 | ⊢ ( 𝑥 = 𝑡 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑡 ) ) | |
| 11 | 10 | oveq1d | ⊢ ( 𝑥 = 𝑡 → ( ( 𝐹 ‘ 𝑥 ) ↑ 𝑁 ) = ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑁 ) ) |
| 12 | 4 9 11 | cbvmpt | ⊢ ( 𝑥 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑥 ) ↑ 𝑁 ) ) = ( 𝑡 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑁 ) ) |
| 13 | cncff | ⊢ ( 𝐹 ∈ ( 𝐴 –cn→ ℂ ) → 𝐹 : 𝐴 ⟶ ℂ ) | |
| 14 | 2 13 | syl | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) |
| 15 | 14 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑡 ) ∈ ℂ ) |
| 16 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐴 ) → 𝑁 ∈ ℕ0 ) |
| 17 | 15 16 | expcld | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑁 ) ∈ ℂ ) |
| 18 | oveq1 | ⊢ ( 𝑥 = ( 𝐹 ‘ 𝑡 ) → ( 𝑥 ↑ 𝑁 ) = ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑁 ) ) | |
| 19 | eqid | ⊢ ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) | |
| 20 | 6 9 18 19 | fvmptf | ⊢ ( ( ( 𝐹 ‘ 𝑡 ) ∈ ℂ ∧ ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑁 ) ∈ ℂ ) → ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ‘ ( 𝐹 ‘ 𝑡 ) ) = ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑁 ) ) |
| 21 | 15 17 20 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐴 ) → ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ‘ ( 𝐹 ‘ 𝑡 ) ) = ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑁 ) ) |
| 22 | 21 | eqcomd | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑁 ) = ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ‘ ( 𝐹 ‘ 𝑡 ) ) ) |
| 23 | 22 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑡 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑁 ) ) = ( 𝑡 ∈ 𝐴 ↦ ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) |
| 24 | 12 23 | eqtrid | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑥 ) ↑ 𝑁 ) ) = ( 𝑡 ∈ 𝐴 ↦ ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) |
| 25 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → 𝑥 ∈ ℂ ) | |
| 26 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → 𝑁 ∈ ℕ0 ) |
| 27 | 25 26 | expcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ( 𝑥 ↑ 𝑁 ) ∈ ℂ ) |
| 28 | 27 | fmpttd | ⊢ ( 𝜑 → ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) : ℂ ⟶ ℂ ) |
| 29 | fcompt | ⊢ ( ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) : ℂ ⟶ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ) → ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ∘ 𝐹 ) = ( 𝑡 ∈ 𝐴 ↦ ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) | |
| 30 | 28 14 29 | syl2anc | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ∘ 𝐹 ) = ( 𝑡 ∈ 𝐴 ↦ ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) |
| 31 | 24 30 | eqtr4d | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑥 ) ↑ 𝑁 ) ) = ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ∘ 𝐹 ) ) |
| 32 | expcncf | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ∈ ( ℂ –cn→ ℂ ) ) | |
| 33 | 3 32 | syl | ⊢ ( 𝜑 → ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ∈ ( ℂ –cn→ ℂ ) ) |
| 34 | 2 33 | cncfco | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ∘ 𝐹 ) ∈ ( 𝐴 –cn→ ℂ ) ) |
| 35 | 31 34 | eqeltrd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑥 ) ↑ 𝑁 ) ) ∈ ( 𝐴 –cn→ ℂ ) ) |