This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The empty function is integrable. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iblempty | ⊢ ∅ ∈ 𝐿1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mbf0 | ⊢ ∅ ∈ MblFn | |
| 2 | fconstmpt | ⊢ ( ℝ × { 0 } ) = ( 𝑥 ∈ ℝ ↦ 0 ) | |
| 3 | 2 | eqcomi | ⊢ ( 𝑥 ∈ ℝ ↦ 0 ) = ( ℝ × { 0 } ) |
| 4 | 3 | fveq2i | ⊢ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ 0 ) ) = ( ∫2 ‘ ( ℝ × { 0 } ) ) |
| 5 | itg20 | ⊢ ( ∫2 ‘ ( ℝ × { 0 } ) ) = 0 | |
| 6 | 4 5 | eqtri | ⊢ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ 0 ) ) = 0 |
| 7 | 0re | ⊢ 0 ∈ ℝ | |
| 8 | 6 7 | eqeltri | ⊢ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ 0 ) ) ∈ ℝ |
| 9 | 8 | rgenw | ⊢ ∀ 𝑘 ∈ ( 0 ... 3 ) ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ 0 ) ) ∈ ℝ |
| 10 | noel | ⊢ ¬ 𝑥 ∈ ∅ | |
| 11 | 10 | intnanr | ⊢ ¬ ( 𝑥 ∈ ∅ ∧ 0 ≤ ( ℜ ‘ ( 0 / ( i ↑ 𝑘 ) ) ) ) |
| 12 | 11 | iffalsei | ⊢ if ( ( 𝑥 ∈ ∅ ∧ 0 ≤ ( ℜ ‘ ( 0 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 0 / ( i ↑ 𝑘 ) ) ) , 0 ) = 0 |
| 13 | 12 | eqcomi | ⊢ 0 = if ( ( 𝑥 ∈ ∅ ∧ 0 ≤ ( ℜ ‘ ( 0 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 0 / ( i ↑ 𝑘 ) ) ) , 0 ) |
| 14 | 13 | a1i | ⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ ) → 0 = if ( ( 𝑥 ∈ ∅ ∧ 0 ≤ ( ℜ ‘ ( 0 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 0 / ( i ↑ 𝑘 ) ) ) , 0 ) ) |
| 15 | 14 | mpteq2dva | ⊢ ( ⊤ → ( 𝑥 ∈ ℝ ↦ 0 ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ ∅ ∧ 0 ≤ ( ℜ ‘ ( 0 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 0 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) |
| 16 | eqidd | ⊢ ( ( ⊤ ∧ 𝑥 ∈ ∅ ) → ( ℜ ‘ ( 0 / ( i ↑ 𝑘 ) ) ) = ( ℜ ‘ ( 0 / ( i ↑ 𝑘 ) ) ) ) | |
| 17 | dm0 | ⊢ dom ∅ = ∅ | |
| 18 | 17 | a1i | ⊢ ( ⊤ → dom ∅ = ∅ ) |
| 19 | 10 | intnan | ⊢ ¬ ( ⊤ ∧ 𝑥 ∈ ∅ ) |
| 20 | 19 | pm2.21i | ⊢ ( ( ⊤ ∧ 𝑥 ∈ ∅ ) → ( ∅ ‘ 𝑥 ) = 0 ) |
| 21 | 15 16 18 20 | isibl | ⊢ ( ⊤ → ( ∅ ∈ 𝐿1 ↔ ( ∅ ∈ MblFn ∧ ∀ 𝑘 ∈ ( 0 ... 3 ) ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ 0 ) ) ∈ ℝ ) ) ) |
| 22 | 21 | mptru | ⊢ ( ∅ ∈ 𝐿1 ↔ ( ∅ ∈ MblFn ∧ ∀ 𝑘 ∈ ( 0 ... 3 ) ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ 0 ) ) ∈ ℝ ) ) |
| 23 | 1 9 22 | mpbir2an | ⊢ ∅ ∈ 𝐿1 |