This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The empty function is integrable. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iblempty | |- (/) e. L^1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mbf0 | |- (/) e. MblFn |
|
| 2 | fconstmpt | |- ( RR X. { 0 } ) = ( x e. RR |-> 0 ) |
|
| 3 | 2 | eqcomi | |- ( x e. RR |-> 0 ) = ( RR X. { 0 } ) |
| 4 | 3 | fveq2i | |- ( S.2 ` ( x e. RR |-> 0 ) ) = ( S.2 ` ( RR X. { 0 } ) ) |
| 5 | itg20 | |- ( S.2 ` ( RR X. { 0 } ) ) = 0 |
|
| 6 | 4 5 | eqtri | |- ( S.2 ` ( x e. RR |-> 0 ) ) = 0 |
| 7 | 0re | |- 0 e. RR |
|
| 8 | 6 7 | eqeltri | |- ( S.2 ` ( x e. RR |-> 0 ) ) e. RR |
| 9 | 8 | rgenw | |- A. k e. ( 0 ... 3 ) ( S.2 ` ( x e. RR |-> 0 ) ) e. RR |
| 10 | noel | |- -. x e. (/) |
|
| 11 | 10 | intnanr | |- -. ( x e. (/) /\ 0 <_ ( Re ` ( 0 / ( _i ^ k ) ) ) ) |
| 12 | 11 | iffalsei | |- if ( ( x e. (/) /\ 0 <_ ( Re ` ( 0 / ( _i ^ k ) ) ) ) , ( Re ` ( 0 / ( _i ^ k ) ) ) , 0 ) = 0 |
| 13 | 12 | eqcomi | |- 0 = if ( ( x e. (/) /\ 0 <_ ( Re ` ( 0 / ( _i ^ k ) ) ) ) , ( Re ` ( 0 / ( _i ^ k ) ) ) , 0 ) |
| 14 | 13 | a1i | |- ( ( T. /\ x e. RR ) -> 0 = if ( ( x e. (/) /\ 0 <_ ( Re ` ( 0 / ( _i ^ k ) ) ) ) , ( Re ` ( 0 / ( _i ^ k ) ) ) , 0 ) ) |
| 15 | 14 | mpteq2dva | |- ( T. -> ( x e. RR |-> 0 ) = ( x e. RR |-> if ( ( x e. (/) /\ 0 <_ ( Re ` ( 0 / ( _i ^ k ) ) ) ) , ( Re ` ( 0 / ( _i ^ k ) ) ) , 0 ) ) ) |
| 16 | eqidd | |- ( ( T. /\ x e. (/) ) -> ( Re ` ( 0 / ( _i ^ k ) ) ) = ( Re ` ( 0 / ( _i ^ k ) ) ) ) |
|
| 17 | dm0 | |- dom (/) = (/) |
|
| 18 | 17 | a1i | |- ( T. -> dom (/) = (/) ) |
| 19 | 10 | intnan | |- -. ( T. /\ x e. (/) ) |
| 20 | 19 | pm2.21i | |- ( ( T. /\ x e. (/) ) -> ( (/) ` x ) = 0 ) |
| 21 | 15 16 18 20 | isibl | |- ( T. -> ( (/) e. L^1 <-> ( (/) e. MblFn /\ A. k e. ( 0 ... 3 ) ( S.2 ` ( x e. RR |-> 0 ) ) e. RR ) ) ) |
| 22 | 21 | mptru | |- ( (/) e. L^1 <-> ( (/) e. MblFn /\ A. k e. ( 0 ... 3 ) ( S.2 ` ( x e. RR |-> 0 ) ) e. RR ) ) |
| 23 | 1 9 22 | mpbir2an | |- (/) e. L^1 |